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Groups play a central role in just about all branches of Mathematics and continue

to be a very active area of research. Computational group theory is a subject of great

topical interest and has many applications in Mathematics and other sciences. By the

classification of finite simple groups in 1981, it is now known that every finite simple

group is either cyclic of prime order, an Alternating group of degree n (n ≥ 5), a

simple group of Lie type, or one of 26 sporadic simple groups.

There can be no question that the modern computer offers a powerful resource

for supporting research and teaching of mathematics. The power of this resource,

however, can be made easily accessible to academics and students through appropriate

software-package as computational tools. The widespread availability of such software

in our present times has a definite impact on the research we do as well as the contents

and presentation of the mathematics we teach, as they make some topics redundant

and others necessary.

The growth of computational group theory over the last thirty years has stimulated

the demand for software, which would permit the exploitation of these techniques by

the wider group theory community. The development in the late seventies and early

eighties of machine independent software implementing particular group theory algo-

rithms presented the first step towards meeting this demand. Pure mathematicians

were stirred by, but in most cases also confined by the information that was produced

by group theoretic software for their special research problem and hampered by the

uneasy feeling that one was dealing with black boxes of uncontrollable reliability.

However, the last years have seen a rapid spread of the interest in the understanding,

design and even implementation of group theoretical algorithms. These are gradually

becoming accepted both as a standard tool for a working group theorist, like cer-

tain methods of proof, and as worthwhile objects of study, like connections between

notions expressed in theorems.

The software-packages GAP and MAGMA were started as an attempt to meet

this interest. These packages relieves the user from unwanted technical cores and

assist him/her in the programming, thus supporting invention and implementation of

the new algorithms as well as experimenting with them.

Present Research

A group G is said to be 2-generated if it can be generated by two suitable elements.
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It is well-known that every finite simple group is 2-generated. This has been known for

a long time (cf. Miller [?]) in the case of the alternating groups. Explicit generators

for the alternating groups An, with n ≥ 5 (cf. Aschbacher-Guralnick, [?]) are:

a = (1, 2)(n− 1, n) and b = (1, 2, . . . , n− 1), if n is even

a = (1, n)(2, n− 1) and b = (1, 2, . . . , n− 2), if n is odd.

For the groups of Lie type, Steinberg [?] provided a unified treatment for the 2-

generation of the Chevalley groups and the Twisted groups. Steinberg’s construction

of a generating pair exploits the basic structure of a group of Lie type. Before this

the 2-generation of certain families of Lie-groups were known (eg. PSL(n, F ) and

Sp(n, F )). For the sporadic simple groups we have the following result.

Theorem 0.0.1 (Aschbacher-Guralnick [?]) Every sporadic simple group can be gen-

erated by an involution and another suitable element.

Aschbacher and Guralnick were primarily concerned with applications to coho-

mology. They prove: Let G be a finite group acting faithfully and irreducibly on a

vector space V over the prime field GF (p). Then |H1(G, V )| < |V |, where H1(G, V )

is the first cohomology group of G on V . The 2-generation of the simple groups come

into play in the following way. First it is proved that if G is generated by d elements

then, |H1(G, V )| < |V |d−1, then a reduction to the case G simple is accomplished and

2-generation gives the required result.

In view of applications (as noted above), it is often important to exhibit generating

pairs of some special kind, such as:

• generators carrying a geometric meaning,

• generators of some prescribed order,

• generators that offer an economical presentation of the group.

For this purpose, more subtle and detailed techniques are required. We now examine

such instances.
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1. Genus action: A group G is said to be (n1, . . . , nh)-generated if G is a

quotient of the group

Γ = 〈x1, . . . , xh | x1
n1 = x2

n2 = · · · = xh
nh = x1x2 · · · xh = 1G〉.

In the case where h = 3, 4 we call Γ a triangular group T (n1, n2, n3) and quadrangular

group Q(n1, . . ., n4), respectively. The genus g(G) of a finite group G is defined to be

the smallest integer g such that some Cayley graph of G is embedded on a Riemann

surface Sg with genus g. The action of groups on Riemann surfaces seeks a geometric

representation theory of finite groups as automorphism groups of Riemann surfaces.

The genus action plays the role of an irreducible representations in this theory.

Let Γ be a (n1, . . . , nh)-generated finite group and let H2 be the hyperbolic plane.

If G is a homomorphic image of Γ, then the short exact sequence

1∆ → ∆ → Γ → G → 1G.

gives rise to an orbit space Sg = H2/∆ in the natural way of the structure of a

Riemann surface on which G acts faithfully as a group of conformal mappings. More-

over, the regular branch covering H2/∆ → H2/Γ has branch point orders n1, . . . , nh.

The genus of H2/∆, hence of G, can be calculated from the genus of H2/Γ by the

well-known Riemann-Hurwitz formula

g(H2/∆) = 1 +
|G|
2

[g(H2/Γ)− 2 +
h∑

I=1

(1− 1/ni)]

We now restrict ourselves to finite simple groups. It is conjectured that every finite

non-abelian finite simple group can be generated by an involution and another suitable

element, that is, (2, s, t)-generated. The validity of this conjecture will simplify the

calculation of the genus of finite simple groups as follows.

Proposition 0.0.2 (Woldar [22]) Let G be a finite non-abelian (2, s, t)-generated

group and S a Riemann surface of least genus on which G acts. Then S/G = S2 (the

2-sphere) and the branch covering π : S → S/G has either 3 or 4 branch points.

Thus the genus action of the (2, s, t)-generated finite groups arise from the short

exact sequence 1Delta → ∆ → Γ → G → 1G, where Γ is either a triangular group or a
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quadrangular group. As a consequence of the Riemann-Hurwitz equation the genus

of a (2, s, t)-generated group G is given by

g(G) = 1 +
|G|
2

M,

where M = 1− 1/l − 1/m− 1/n or M = 2− 1/u− 1/v − 1/w − 1/x , depending,

respectively, on whether Γ = T (l,m, n) or Q(u, v, w, x) in the genus action. Thus the

genus problem of the these groups is reduced to a problem on generations. With this

in mind Moori [14] posed the following problem.

(1) Let G be a finite simple group such that l, m, n are divisors of |G| with 1/l+1/m+

1/n < 1. Is G a (l, m, n)-generated group?

2. Spread: Let r be any positive integer. A finite non-abelian group G is said

to have spread r, if for every set {x1, x2, . . ., xr} of distinct non-trivial elements of G,

there exists a complementary y ∈ G such that G = 〈xi, y〉 for all i. Let G be a finite

group and nX a conjugacy class of G. The group G is called nX-complementary

generated if, given an arbitrary x ∈ G, complementary y can always be chosen from

the conjugacy class nX. Woldar proved that every sporadic simple group G is pA-

complementary generated, where p is the largest prime divisor of |G|. In an attempt

to further the theory on nX-complementary generations we pose the following prob-

lem.

(2) Find all conjugacy classes nX of a finite simple group G such that G is nX-

Complementary generated.

3. Generation by Conjugate Elements. There has recently been some interest

in generation of simple groups by their conjugate involutions. It is well known that

sporadic simple groups are generated by three conjugate involutions (see [6]). If a

group G = 〈a, b〉 is perfect and a2 = b3 = 1 then clearly G is generated by three

conjugate involutions a, ab and ab2 (see [7]). Moori [15] proved that the Fischer

group Fi22 can be generated by three conjugate involutions. The work of Liebeck
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and Shalev [12] show that all but finitely many classical groups can be generated by

three involutions. The generation of a simple group by its conjugate elements in this

context is of some interest.

Suppose that G is a finite group and X ⊆ G. We denote the rank of X in G by

rank(G:X), the minimum number of elements of X generating G. This paper focuses

on the determination of rank(G:X) where X is a conjugacy class of G and G is a

sporadic simple group.

Moori in [13], [14] and [15] proved that rank(Fi22:2A) ∈ {5, 6} and rank(Fi22:2B) =

rank(Fi22:2C) = 3 where 2A, 2B and 2C are the conjugacy classes of involutions of

the smallest Fischer group Fi22 as presented in the ATLAS [4]. The work of Hall

and Soicher [9] show that rank(Fi22:2A) = 6. Moori in [16] determined the ranks of

the Janko groups J1, J2 and J3. More recently, in a series of papers [1, 2, 3, 10], we

investigated the ranks for the sporadic group HS, McL, Co1 Co2, Co3, Ru, Suz and

Th.

Proposed Research

The central role-played in the representation theory of finite groups and algebraic

groups has progressively become clear during the past two decades. There has been

great progress in purely combinatorial theory of finite groups. The character tables

of all the maximal subgroups of simple groups are not yet known. I would like

to apply the method of Fischer-Clifford matrices to construct the character tables

of certain group extensions related to sporadic simple groups and finite groups of

Lie type. This method has the advantage that character tables of pretty complicated

groups can be computed because the arithmetical and combinatorial properties of the

matrices involved are very powerful. For our computations, in addition to GAP and

MAGMA systems, we would like to investigate the possibility of using MeatAxe,

a computer algebra package freely available in the GAP.

For most group theorists studying generations, the main aim is not just to give

generators, but to offer economical presentations for the groups in question. For the

finite non-abelian simple groups 2-generations is an ideal starting point. Solutions

to the three problems posed above will provide us with a pool of generations pairs

(together with some relations) which may in time be extended to (abstract) presen-

tations of the groups.
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In this project we will focus on problems (1), (2) and (3) for the Harada-Norton

sporadic simple group HN and for the Tits group Tits. We will provide a complete

answer to problem for these groups.

Expected Outcome of the Proposed Research

It is expected that the research in this project will bring fruitful results of great

significance, which will be publishable in internationally recognized journals. As a

result of this research plan, we would like to gain a better understanding of the

interaction between the character theory of sporadic groups and the generation type

problems relating to these simple groups. This project will give us a more clear

direction for our future research.
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