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Abstract

If G is a finite group and X a conjugacy class of G, then we define rank(G : X)
to be the minimum number of elements of X generating G. In the present
paper, we determine the ranks of the sporadic simple groups HS and McL.
Most of the calculations were carried out using the computer algebra system
GAP [13].

1 Introduction and Preliminaries

Let G be a finite group and X ⊆ G. We denote the minimum number of elements
of X generating G by rank(G : X). In the present paper we investigate rank(G : X)
where X is a conjugacy class of G and G is a sporadic simple group.

Moori in [9], [10] and [11] proved that 5 ≤ rank(Fi22 : 2A) ≤ 6 and rank(Fi22 :
2B) = rank(Fi22 : 2C) = 3 where 2A, 2B and 2C are the conjugacy classes of invo-
lutions of the smallest Fischer group Fi22 as represented in the ATLAS [1]. Hall and
Soicher in [6] proved that rank(Fi22 : 2A) = 6. Moori in [12] determined the ranks of
the Janko group J1, J2 and J3.

In the present paper, we determine the ranks of the two sporadic simple groups,
namely Higman-Sims group HS and McLaughlin group McL. For basic properties
of HS and McL, character tables of these groups and their maximal subgroups we
use ATLAS [1] and GAP [13]. For detailed information about the computational
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techniques used in this paper the reader is encouraged to consult [5], [11] and [12].

We now develop the terminology and notation that will be used in the subsequent
sections. Throughout this paper we use the same notation as in [5] and [11]. In par-
ticular, for a finite group G with C1, C2, . . . , Ck conjugacy classes of its elements and
gk a fixed representative of Ck, we denote ∆G(C1, C2, . . . , Ck) the number of distinct
tuples (g1, g2, . . . , gk−1) with gi ∈ Ci such that g1g2 . . . gk−1 = gk. It is well known that
∆G(C1, C2, . . . , Ck) is structure constant for the conjugacy classes C1, C2, . . . , Ck and
can be easily computed from the character table of G (see [7], p.45) by the following
formula

∆G(C1, C2, . . . , Ck) =
|C1||C2| . . . |Ck−1|

|G|
×

m∑
i=1

χi(g1)χi(g2) . . . χi(gk−1)χi(gk)

[χi(1G)]k−2

where χ1, χ2, . . . , χm are the irreducible complex characters of G. Further let
∆∗

G(C1, C2, . . . , Ck) denote the number of distinct tuples (g1, g2, . . . , gk−1) with gi ∈ Ci

and g1g2 . . . gk−1 = gk such that G =< g1, g2, . . . , gk−1 >. If ∆∗
G(C1, C2, . . . , Ck) > 0,

then we say that G is (C1, C2, . . . , Ck)-generated. If H is a subgroup of G containing
gk and B is a conjugacy class of H such that gk ∈ B, then ΣH(C1, C2, . . . , Ck−1, B) de-
notes the number of distinct tuples (g1, g2, . . . , gk−1) such that gi ∈ Ci and g1g2 . . . gk−1 =
gk and 〈g1, g2, . . . , gk−1〉 ≤ H.

For the description of the conjugacy classes, the character tables, permutation
characters and information on the maximal subgroups readers are referred to ATLAS
[1]. A general conjugacy class of elements of order n in G is denoted by nX. For
example 2A represents the first conjugacy class of involutions in a group G. We will
use the maximal subgroups and the permutation characters of HS and McL on the
conjugates (right cosets) of the maximal subgroups listed in the ATLAS [1] exten-
sively.

The following results will be crucial in determining the ranks of a finite group G.

Lemma 1 (Moori [12]) Let G be a finite simple group such that G is (lX, mY, nZ)-
generated. Then G is (lX, lX, . . . , lX︸ ︷︷ ︸

m−times

, (nZ)m)-generated.

Corollary 2 Let G be a finite simple group such that G is (lX, mY, nZ)-generated,
then rank(G : lX) ≤ m.

Proof: The proof follows immediately from Lemma 1.

Lemma 3 (Conder et al. [2]) Let G be a simple (2X, mY, nZ)-generated group. Then
G is (mY, mY, (nZ)2)-generated.
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The following lemma gives useful criterion for establishing non-generation.

Lemma 4 ([17]) Let G be a finite centerless group and suppose lX, mY , nZ are G-
conjugacy classes for which ∆∗(G) = ∆∗

G(lX,mY, nZ) < |CG(nZ)|. Then ∆∗(G) = 0
and therefore G is not (lX,mY, nZ)-generated.

2 Ranks of HS

The Higman-Sims group HS is a sporadic simple group of order 29.32.53.7.11 with
12 classes of maximal subgroups. HS has 24 conjugacy classes of its elements. It
has two conjugacy classes of involutions namely 2A and 2B. The group HS acts
primitively on a set Ω of 100 points. The point stabilizer of this action is isomorphic
to the Mathieu group M22 and the orbits have length 1, 22 and 77. The permutation
character of HS on the conjugates of M22 is given by χM22 = 1a + 22a + 77a. For
basic properties of HS and computational techniques, the reader is encouraged to
consult [5], [9] and [10].

We now compute rank of each conjugacy class of HS.

It is well known that every sporadic simple group can be generated by three
involutions (see [3]). In the following lemma we prove that HS can be generated by
three involutions a, b, c ∈ 2X, where X ∈ {A, B} such that abc ∈ 11A

Lemma 5 rank(HS : 2X) = 3 where X ∈ {A, B}.

Proof. We know that HS is (2B, 3A, 11A)-generated by Ganief and Moori [5] and
Wolder [16]. By applying Corollary 2, we have rank(HS : 2B) ≤ 3. But rank(HS :
2B) = 2 is not possible, because if 〈x, y〉 = HS for some x, y ∈ 2B then HS ∼= D2n

with o(xy) = n. Hence rank(HS : 2B) = 3.
For the rank of the conjugacy class 2A, we first show that HS is (2A, 2A, 2A, 11A)-

generated. We compute the structure constant ∆HS(2A, 2A, 2A, 11A) = 3872. If z is
a fixed element of order 11 in HS, then there are 3872 distinct triples (x, x

′
, x

′′
) with

{x, x
′
, x

′′} ⊂ 2A such that xx
′
x

′′
= z. We observe that the only maximal subgroups of

HS which have order divisible by 11, up to isomorphism, are M11 (two non-conjugate
copies) and M22. Clearly then, any proper (2A, 2A, 2A, 11A)-subgroup of HS must lie
in one of M11 or M22. In M11, the 2A-class, say T , is the only class which fuses to 2A-
class of HS and we obtain that ΣM11(2A, 2A, 2A, 11A) = ∆M11(2A, 2A, 2A, 11A) =
605. Since z is contained in precisely one conjugate of each M11 in HS. Thus the
the total contribution from subgroups of HS isomorphic to M11 to the distinct triples
(x, x

′
, x

′′
) with {s, s′

, s
′′} ⊂ T and xx

′
x

′′
= z is equal to 605× 2.

Similarly, we compute ΣM22(2A, 2A, 2A, 11A) = 2420. Since z is contain in pre-
cisely one conjugate of M22 in HS, the total contribution from the subgroups of HS
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isomorphic to M22 to the distinct triples (x, x
′
, x

′′
) in M22 with xx

′
x

′′
= z is equal to

2420.
Thus we have

∆∗
HS(2A, 2A, 2A, 11A) ≥ ∆HS(2A, 2A, 2A, 11A)− [2× ΣM11(2A, 2A, 2A, 11A)

+ΣM22(2A, 2A, 2A, 11A)]

= 3872− [2× 605 + 2420] > 0.

Hence HS is (2A, 2A, 2A, 11A)-generated and therefore we have rank(HS : 2A) ≤ 3.
Since rank(HS : 2A) > 2, the result follows.

Remark 1 The converse of Lemma 1 is not true in general since HS is not (2A, 3A, tZ)-
generated group for any tZ.

Table I
Structure Constants of HS

tX 3A 4A 4B 4C 5A 5B 5C 6A 6B
∆HS(4A, 4A, tX) 75 0 4 32 0 60 10 0 0
|CHS(tX)| 360 3840 256 64 500 300 25 36 24

tX 7A 8ABC 10A 10B 11AB 12A 15A 20AB
∆HS(4A, 4A, tX) 7 0 13 0 0 0 15 20
|CHS(tX)| 7 16 20 20 11 12 15 20

Lemma 6 rank(HS : 4A) = 3.

Proof. First we show that HS can not be (4A, 4A, tX)-generated for any tX. If
HS is (4A, 4A, tX)-generated then 1

4
+ 1

4
+ 1

t
< 1 and it follows that t ≥ 3. Set

K = {3A, 4A, 4B, 4C, 5A, 5B, 5C, 6A, 6B, 8A, 8B, 8C, 10A, 10B, 11A, 11B, 12A, 15A,
20A, 20B}. If tX ∈ K then from Table I, we see that

∆∗
HS(4A, 4A, tX) ≤ ∆HS(4A, 4A, tX) < |CHS(tX)|.

Now by using Lemma 4, we obtain that ∆∗
HS(4A, 4A, tX) = 0 and hence HS is not

(4A, 4A, tX)-generated for every tX ∈ K.
For the triple (4A, 4A, 7A), we have ∆HS(4A, 4A, 7A) = 7 = |CHS(7A)|. To

show that HS is not (4A, 4A, 7A)-generated, we construct the HS using its ”stan-
dard generators” given in [14] and also in [15]. The group HS has 20-dimensional
irreducible representation over GF (2). Using GAP we generate HS = 〈a, b〉, where
a and b are 20 × 20 matrices over GF (2) with orders 2 and 5 respectively. Let
x = ((ab)−7(abababababbab3)3(ab)6)3 and z = (a6(ab)2(ab2)27(abab2ab2)50(ab5))2. Us-
ing GAP we see that a ∈ 2A, b ∈ 5A and ab ∈ 11A. Also x ∈ 4A and z ∈ 7A. Now
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if y = (x2z)3 then y ∈ 4A and xy ∈ 7A. Let P = 〈x, y〉 then P < HS and P ∼= S7.
We calculate that ΣP (4A, 4A, 7A) = 7. By investigating the maximal subgroups
of P and their fusions into P and HS, we find that no maximal subgroup of P is
(4A, 4A, 7A)-generated and hence no proper subgroup of P is (4A, 4A, 7A)-generated.
Thus ∆∗

HS(4A, 4A, 7A) = 0 and non-generation by this triple follows. Hence HS is
not (4A, 4A, tX)-generated for any t and we conclude that rank(HS : 3A) > 2.

Next we show that HS is (4A, 4A, 4A, 10A)-generated. Using character table
of HS, we compute the structure constant ∆HS(4A, 4A, 4A, 10A) = 22800. The
maximal subgroups of HS with elements of order 10 and nontrivial intersection with
classes 4A and 10A are, up to isomorphism, U3(5):2 (two non-conjugate copies),
4·24:S5 and 5:4× A5. An easy computation reveals that

ΣU3(5):2(4A, 4A, 4A, 10A) = Σ4·24:S5
(4A, 4A, 4A, 10A) = Σ5:4×A5(4A, 4A, 4A, 10A) = 0.

It follows that ∆∗
HS(4A, 4A, 4A, 10A) = ∆HS(4A, 4A, 4A, 10A) = 22800. Thus HS

has no proper (4A, 4A, 4A, 10A)-generated subgroup, so is itself (4A, 4A, 4A, 10A)-
generated. Since rank(HS : 4A) > 2, the result follows.

Theorem 7 If nX /∈ {1A, 2A, 2B, 4A} then rank(HS : nX) = 2.

Proof. First we treat the case when nX = 3A. Since HS is (2B, 3A, 11A)-generated
(see Wolder [16]). By Lemma 3, HS is (3A, 3A, (11Z)2)-generated. Hence we have
rank(HS : 3A) = 2. Now for the conjugacy class nX = 4B, consider the triple
(4B, 4B, 10A). Here the structure constant ∆HS(4B, 4B, 10A) = 375. A quick ex-
amination of the maximal subgroup structure of HS reveals that any (4B, 4B, 10A)-
generated subgroup must be contained in 4·24:S5. Since Σ4·24:S5

(4B, 4B, 10A) = 15,
we have ∆∗

HS(4B, 4B, 10A) ≥ 375 − 15 > 0. Hence HS is (4B, 4B, 10A)-generated
and so rank(HS : 4B) = 2.

Direct computation using GAP and results from Ganief and Moori [5] show that
HS = 〈a, b〉 where a ∈ 2A, and b ∈ nX with nX ∈ {4C, 5A, 5B, 5C, 6A, 6B, 7A, 11A,
11B}. Since (8B)2 = 4C = (8C)2, (10A)2 = 5A, (10B)2 = 5B and (20A)2 =
10A = (20B)2, (12A)2 = 6B and (15A)3 = 5B we have HS = 〈a, c〉 where c ∈
{8B, 8C, 10A, 10B, 12A, 15A, 20A, 20B}.

Therefore HS is (2A, nX, mY )-generated where nX ∈ {4C, 5A, 5B, 5C, 6A, 6B, 7A,
8A, 8B, 8C, 10A, 10B, 11A, 11B, 12A, 15A, 20A, 20B} with appropriate mY . Hence
rank(HS : nX) = 2 where nX /∈ {1A, 2A, 2B, 4A}.

3 Ranks of McL

The sporadic simple group of McLaughlin McL has order 27.36.53.7.11 with 24 con-
jugacy classes of its elements. It has only one class of involutions, namely 2A. We
adopt the same notation as in the previous section. For information regarding the
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maximal subgroups and other background material about McL, the interested reader
is referred to [1] and [4].

Before investigating the ranks of McL we show that McL can be generated by
the three involutions.

Lemma 8 The group McL is (2A, 2A, 2A, 11A)-generated.

Proof. Observe that the only maximal subgroups of McL which have order divisible
by 11 and non-empty intersection with the classes 2A and 11A are isomorphic to
M11 and M22 (two non-conjugate copies). We calculate ∆McL(2A, 2A, 2A, 11A) =
9317, ΣM22(2A, 2A, 2A, 11A) = 2420, ΣM11(2A, 2A, 2A, 11A) = 605. Further, a fixed
element of order 11 is contained in two conjugates of a M22 subgroup and a unique
sonjugate of a M11 subgroup. Thus

∆∗
McL(2A, 2A, 2A, 11A) ≥ ∆McL(2A, 2A, 2A, 11A)− 2× ΣM22(2A, 2A, 2A, 11A)

−ΣM11(2A, 2A, 2A, 11A),

= 9317− 2× 2420− 605 > 0.

Hence McL is (2A, 2A, 2A, 11A)-generated.

Lemma 9 rank(McL : 2A) = 3.

Proof. In the previous Lemma, we showed that McL can be generated by three
involutions x, y, z ∈ 2A such that xyz ∈ 11A. Therefore rank(McL : 2A) ≤ 3. Since
rank(McL : 2A) = 2 is not possible, the result follows.

Lemma 10 rank(McL : 3A) = 3

Proof. Since McL is (3A, 5X, 11Y )-generated where X, Y ∈ {A, B} (see Ganief and
Moori [5]), we have 2 ≤ rank(McL : 3A) ≤ 5. If the group McL is (3A, 3A, tX)-
generated then 1

3
+ 1

3
+ 1

t
< 1 and it follows that t ≥ 4. It is evident from Table II

that ∆McL(3A, 3A, tX) < |CMcL(3A, 3A, tX)| for all t ≥ 4. Therefore by Lemma 4,
∆∗

McL(3A, 3A, tX) = 0 and we conclude that McL is not (3A, 3A, tX)-generated for
any tX. Hence rank(McL : 3A) > 2.

Now consider the case (3A, 3A, 3A, 10A). The maximal subgroups of McL with
non-empty intersection with the classes 3A and 10A are, up to isomorphisms, H ∼=
31+4:2S5, L ∼= 2.A8 and U ∼= 51+2:3:8. Also, ∆McL(3A, 3A, 3A, 10A) = 27650,
ΣH(3A, 3A, 3A, 10A) = 50, ΣL(3A, 3A, 3A, 10A) = 50 and ΣU(3A, 3A, 3A, 10A) = 0.
Since a fixed element of order 10 is contained in a unique conjugate of H, L and U
subgroups of McL, respectively. We have

∆∗
McL(3A, 3A, 3A, 10A) ≥ 27650− [50 + 50 + 0] = 27550 > 0.

So, McL is (3A, 3A, 3A, 10A)-generated. Now the result follows from the relation
that rank(McL : 3A) > 2.
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Table II
Structure Constants of McL

tX 4A 5A 5B 6A 6B 7AB 8A 9AB
∆McL(3A, 3A, tX) 4 0 10 15 0 0 0 0
|CMcL(tX)| 96 750 25 360 36 14 8 27

tX 10A 11AB 12A 14AB 15AB 30AB
∆McL(3A, 3A, tX) 5 0 0 0 0 0
|CMcL(tX)| 30 11 12 14 30 30

Theorem 11 If nX /∈ {1A, 2A, 3A} then rank(McL : nX) = 2.

Proof. For nX = 3B we show that McL is (3B, 3B, 10A)-generated. The maximal
subgroups of McL which have non-empty intersection with the classes 3B and 10A
are H1

∼= U3(5), H2
∼= 31+4:2S5 and H3

∼= 2.A8. Any easy computation reveals that
∆McL(3B, 3B, 10A) = 1375, ΣH1(3B, 3B, 10A) = 125, ΣH2(3B, 3B, 10A) = 10 and
ΣH3(3B, 3B, 10A) = 55. Thus we have

∆∗
McL(3B, 3B, 10A) ≥ ∆McL(3B, 3B, 10A)− [ΣH1(3B, 3B, 10A)

+ΣH2(3B, 3B, 10A) + ΣH3(3B, 3B, 10A)]

= 1375− [125 + 10 + 55] > 0.

Hence McL is (3B, 3B, 10A)-generated and therefore we obtain that rank(McL :
3B) = 2.

Direct computation using GAP and from the results of Ganief and Moori ([5])
together with information about the power maps, we can be show that McL is
(2A, nX, mZ)-generated for all nX /∈ {1A, 2A, 3A, 3B} with appropriate mZ. Now
by Lemma 3, McL is (nX, nX, (mZ)2)-generated for all nX /∈ {1A, 2A, 3A, 3B}.
Hence rank(McL : nX) = 2 where nX /∈ {1A, 2A, 3A}.

Remark 2 For example McL is (2A, 7A, 11X)-generated where X ∈ {A, B}. Hence
McL is (7A, 7A, (11X)2)-generated and so rank(McL : 7A) = 2.
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