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Abstract

Let G be a finite group and X a conjugacy class of G. We denote rank(G:X) to
be the minimum number of elements of X generating G. In the present article,
we determine the ranks of the Conway groups Co2 and Co3. Computations
were carried with the aid of computer algebra system GAP [18].

1 Introduction and Preliminaries

There has recently been some interest in generation of simple groups by their conju-
gate involutions. It is well known that sporadic simple groups are generated by three
conjugate involutions (see [5]). If a group G = 〈a, b〉 is perfect and a2 = b3 = 1 then
clearly G is generated by three conjugate involutions a, ab and ab2 (see [6]). Moori [15]
proved that the Fischer group Fi22 can be generated by three conjugate involutions.
The work of Liebeck and Shalev [12] shows that all but finitely many classical groups
can be generated by three involutions. However, the problem of finding simple clas-
sical groups which can be generated by three conjugate involutions is still very much
open. The generation of a simple group by its conjugate elements in this context is of
some interest. Therefore, we concentrate on the generation of simple groups by their
conjugate elements and investigate two sporadic simple groups.

Suppose that G is a finite group and X ⊆ G. We denote the rank of X in G by
rank(G:X), the minimum number of elements of X generating G. This paper focuses
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on the determination of rank(G:X) where X is a conjugacy class of G and G is a
sporadic simple group.

Moori in [13], [14] and [15] proved that rank(Fi22:2A) ∈ {5, 6} and rank(Fi22:2B) =
rank(Fi22:2C) = 3 where 2A, 2B and 2C are the conjugacy classes of involutions of
the smallest Fischer group Fi22 as presented in the ATLAS [3]. The work of Hall
and Soicher [9] show that rank(Fi22:2A) = 6. Moori [16] determined the ranks of the
Janko groups J1, J2 and J3. More recently, in [1], the authors investigated the ranks
of Higman-Sims group HS and McLaughlin group McL. In the present article we
continue our study on the ranks of sporadic simple groups and determine the ranks
of the Conway’s sporadic simple groups Co2 and Co3.

For basic properties of Co2 and Co3, character tables of these groups and their
maximal subgroups etc. we use ATLAS [3] and [18]. For detailed information about
the computational techniques used in this paper the reader is encouraged to consult
[1], [8], [15], and [16].

Next we discuss some background material and introduce the notation. We adopt
the same notation as in the above mentioned papers. In particular, if G is a finite
group, C1, C2, · · · , Ck are the conjugacy classes of its elements and gk is a fixed
representative of Ck, then ∆G(C1, C2, · · · , Ck) denotes the number of distinct tuples
(g1, g2, · · · , gk−1) ∈ (C1 × C2 × · · · × Ck−1) such that g1g2 · · · gk−1 = gk. It is well
known that ∆G(C1, C2, · · · , Ck) is the structure constant ofG for the conjugacy classes
C1, C2, · · · , Ck and can be computed from the character table of G (see [11], p.45 )
by the following formula

∆G(C1, C2, · · · , Ck) =
|C1||C2| · · · |Ck−1|

|G|
×

m∑
i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)

[χi(1G)]k−2

where χ1, χ2, · · · , χm are the irreducible complex characters of G. Also, ∆∗
G(C1, C2,

· · · , Ck) denotes the number of distinct tuples (g1, g2, · · · , gk−1) ∈ (C1 × C2 × · · · ×
Ck−1) such that g1g2 · · · gk−1 = gk andG = 〈g1, g2, · · · , gk−1〉. If ∆∗

G(C1, C2, · · · , Ck) >
0, then we say that G is (C1, C2, · · · , Ck)-generated. If H any subgroup of G contain-
ing the fixed element gk ∈ Ck, then ΣH(C1, C2, · · · , Ck−1, Ck) denotes the number of
distinct tuples (g1, g2, · · · , gk−1) ∈ (C1×C2× · · · ×Ck−1) such that g1g2 · · · gk−1 = gk

and 〈g1, g2, · · · , gk−1〉 ≤ H where ΣH(C1, C2, · · · , Ck) is obtained by summing the
structure constants ∆H(c1, c2, · · · , ck) ofH over allH-conjugacy classes c1, c2, · · · , ck−1

satisfying ci ⊆ H ∩ Ci for 1 ≤ i ≤ k − 1.
The ATLAS serves as a valuable source of information and we use the Atlas

notation for conjugacy classes, maximal subgroups, character tables, permutation
characters, etc. A general conjugacy class of elements of order n in G is denoted by
nX. For examples, 2A represents the first conjugacy class of involutions in a group
G. We will use the maximal subgroups and the permutations characters of Co2 and
Co3 on the conjugates (right cosets ) of the maximal subgroups listed in the ATLAS
[3] extensively.
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The following results will be crucial in determining the ranks of finite groups.

Lemma 1 (Moori [16]) Let G be a finite simple group such that G is (lX,mY, nZ)-
generated. Then G is (lX, lX, · · · , lX︸ ︷︷ ︸

m−times

, (nZ)m)-generated.

Corollary 2 Let G be a finite simple group such that G is (lX,mY, nZ)-generated,
then rank(G : lX) ≤ m.

Proof: Immediately follows from Lemma 1.

Lemma 3 (Conder et al. [4]) Let G be a simple (2X,mY, nZ)-generated group. Then
G is (mY,mY, (nZ)2)-generated.

2 Ranks of Co2

The Conway group Co2 is a sporadic simple group of order 218.36.53.7.11.23 with 11
conjugacy classes of maximal subgroups. It has 60 conjugacy classes of its elements
including three conjugacy classes of involutions, namely 2A, 2B and 2C. The group
Co2 acts primitively on a set Ω of 2300 points. The point stabilizer of this action is
isomorphic to U6(2):2 and the orbits have length 1, 891 and 1408. The permutation
character of Co2 on the cosets of U6(2):2 is given by χU6(2):2 = 1a + 275a + 2024a
For basic properties of Co2 and computational techniques, the reader is encouraged
to consult [1], [2], [8] and [19].

We now compute the rank of each conjugacy class of Co2.

It is well known that every sporadic simple group can be generated by three
involutions (see [6]). In the following lemmas we prove that Co2 can be generated by
three involutions a, b, c ∈ 2X where X ∈ {A,B}.

Lemma 4 Co2 is (2B, 2B, 2B, 23A)-generated.

Proof: Simple computation show that the structure constant4Co2(2B, 2B, 2B, 23A) =
12696. If z is a fixed element of order 23 in Co2 then there are 12696 distinct triples
(α, β, γ) such {α, β, γ} ⊂ 2A and αβγ = z. We observe that the only maximal sub-
group of Co2 which has order divisible by 23 is M23 and z is contained in a unique
conjugate of M23. Hence, any proper (2B, 2B, 2B, 23A)-subgroup of Co2 must be in
M23. Furthermore, the 2A-class is the only class which fuses to 2B-class of Co2 in
M23. It then follows that ΣM23(2B, 2B, 2B, 23A) = 3174. Thus the total contribution
from M23 to the distinct triples (α, β, γ) with {α, β, γ} ⊂ 2A and αβγ = z is equal
to 3174. Thus we have

∆∗
Co2

(2B, 2B, 2B, 23A) ≥ ∆Co2(2B, 2B, 2B, 23A)− ΣM23(2B, 2B, 2B, 23A)

= 12696− 3174 > 0.
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Hence Co2 is (2B, 2B, 2B, 23A)-generated.

Lemma 5 rank(Co2 : 2X) = 3 where X ∈ {B,C}.

Proof: LetX ∈ {B,C}. Ganief and Moori have shown in [8] that Co2 is (2C, 3A, 23A)-
generated. Thus, from the previous lemma and the above stated result from [8]
together with application of Corollary 2 imply that rank(Co2 : 2X) ≤ 3. But
the case rank(Co2 : 2X) = 2 is not possible since if there are x, y ∈ 2X such
that Co2 =< x, y >, then Co2

∼= D2n where n = o(xy). This concludes that
rank(Co2 : 2X) = 3 whenever X ∈ {B,C}.

Lemma 6 The group Co2 is not (2A, 2A, 2A, tX)-generated for any conjugacy class
tX in Co2.

Proof: The group Co2 acts on a 275-dimensional irreducible complex module V . Let
dnX = dim(V/CV (nX)), the co-dimension of the fix space (in V ) of a representative
in nX. Using the character table of Co2 we list in Table I, the values of dnX , for the
conjugacy classe nX.

TABLE I
The co-dimensions dnX = dim(V/CV (nX))

d2A d2B d2C d4B d4C d4D d4E d4F d4G

112 120 132 190 194 196 194 196 204

Set T = {2A, 2B, 2C, 4B, 4C, 4D, 4E, 4F, 4G}. If the group Co2 is (2A, 2A, 2A, tX)-
generated, then by Scott’s theorem (see [4] and [17]) we must have

d2A + d2A + d2A + dtX ≥ 2× 275.

However, it is clear from Table I that 3 × d2A + dtX < 550 for each tX ∈ T and
therefore Co2 is not (2A, 2A, 2A, tX)-generated, for each tX ∈ T .

Next suppose that tX /∈ T then computing the structure constants, we see that

∆Co2(2A, 2A, 2A, tX) < |CCo2(tX)|

for each tX /∈ T except for tX = 12H. Now an application of Lemma 3.3 in [23]
shows that Co2 is not (2A, 2A, 2A, tX)-generated for any tX /∈ T and tX 6= 12H.

Finally we consider the only remaining case (2A, 2A, 2A, 12H). For this case
we have ∆Co2(2A, 2A, 2A, 12H) = 72 and |CCo2(z)| = 48, z ∈ 12H. In order to
show that Co2 is not (2A, 2A, 2A, 12H)-generated we construct the group Co2 by
using its ”standard generators” given in [21] and also in [20]. The group Co2 has a
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22-dimensional irreducible representation over GF (2). Using this representation we
generate Co2 = 〈a, b〉, where a and b are 22×22 matrices over GF (2) with orders 2 and
5 respectively such that ab has order 28. Using GAP, we see that a ∈ 2A, b ∈ 5A and
ab ∈ 28A. We produce x = b−3ab3, y = ((babab)2b11)7 and z = axy such that x, y ∈ 2A
and z ∈ 12H. Let H = 〈a, x, y〉 then H < Co2 with |H| = 1152. We compute that
ΣH(2A, 2A, 2A, 12H) = 72 and consequently ∆∗

Co2
(2A, 2A, 2A, 12H) = 0. Hence Co2

is not (2A, 2A, 2A, 12H)-generated. This completes the proof.

Lemma 7 rank(Co2 : 2A) = 4.

Proof: Direct computation using GAP [18] and the results of [8] we see that Co2 =
〈x, y〉 such that x ∈ 2A, y ∈ 4G with xy ∈ 23A. Therefore, Co2 is (2A, 4G, 23A)-
generated. Now, it follows by Corollary 2 that rank(Co2 : 2A) ≤ 4. Since rank(Co2 :
2A) > 3 by the above lemma, the result follows.

Lemma 8 The group Co2 is (2C, tX, 23A)-generated where tX ∈ {3A, 3B, 4C, 4E}.

Proof: We observe that the only maximal subgroup of Co2 which has order divisible
by 23 is M23 and M23 ∩ 2C = ∅. Hence

∆∗
Co2

(2C, 3A, 23A) = ∆Co2(2C, 3A, 23A) = 69 > 0,

∆∗
Co2

(2C, 3B, 23A) = ∆Co2(2C, 3B, 23A) = 69 > 0,

∆∗
Co2

(2C, 4C, 23A) = ∆Co2(2C, 4C, 23A) = 345 > 0,

∆∗
Co2

(2C, 4E, 23A) = ∆Co2(2C, 4E, 23A) = 3128 > 0.

Thus Co2 is (2C, tX, 23A)-generated for any tX ∈ {3A, 3B, 4C, 4E}.

Corollary 9 Let tX ∈ {3A, 3B, 4C, 4E}. Then rank(Co2 : tX) = 2.

Proof: From the previous lemma we know that Co2 is (2C, tX, 23A)-generated for
any tX ∈ {3A, 3B, 4C, 4E}. Now result follows applying Lemma 3.

Lemma 10 The group Co2 is (4X, 4X, 10A)-generated where X ∈ {A,B}.

Proof: The structure constants ∆Co2(4A, 4A, 10A) = 125. The only maximal sub-
groups of Co2 which have non-empty intersection with the classes 4A and 10A are,
up to isomorphism, K1

∼= (21+6
+ × 24).A8 and K2

∼= 31+4
+ : 21+4

− .S5. Direct computa-
tion on GAP shows that ΣK1(4A, 4A, 10A) = 5 and ΣK2(4A, 4A, 10A) = 5. It then
follows that ∆∗

Co2
(4A, 4A, 10A) ≥ 125− 1(5)− 4(5) > 0. Hence Co2 is (4A, 4A, 10A)-

generated.
Similarly, the structure constant ∆Co2(4B, 4B, 23A) = 989, and the only maximal

subgroup of Co2 which has an order divisible by 23 is M23 but M23 ∩ 4B = ∅. This
implies that

4∗
Co2

(4B, 4B, 23A) = 4Co2(4B, 4B, 23A) = 989 > 0

and Co2 is (4B, 4B, 23A)-generated.
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Corollary 11 Let tX ∈ {4A, 4B}. Then rank(Co2 : tX) = 2.

Proof: This is clear from the previous lemma.

Lemma 12 If tX ∈ {4D, 4F, 6C, 6D} then rank(Co2 : tX) = 2.

Proof: Again, the only maximal subgroup of Co2 which has an element of order 23
is M23 but M23 ∩ tX = ∅ for every tX ∈ {4D, 4F, 6C, 6D}. We obtained

∆∗
Co2

(2B, 4D, 23A) = ∆Co2(2B, 4D, 23A) = 23 > 0,

∆∗
Co2

(2B, 4F, 23A) = ∆Co2(2B, 4F, 23A) = 92 > 0,

∆∗
Co2

(2B, 6C, 23A) = ∆Co2(2B, 6C, 23A) = 92 > 0,

∆∗
Co2

(2B, 6D, 23A) = ∆Co2(2B, 6D, 23A) = 115 > 0.

Hence Co2 is (2B, tX, 23A)-generated where tX ∈ {4D, 4F, 6C, 6D} and we get that
rank(Co2 : tX) = 2 where tX ∈ {4D, 4F, 6C, 6D}.

Theorem 13 If nX /∈ {1A, 2A, 2B, 2C}, then rank(Co2 : nX) = 2.

Proof: Set K = {3A, 3B, 4X} where X ∈ {A,B,C,D,E, F}. If nX ∈ K then
rank(Co2 : nX) = 2 by Lemmas 5 to 12.

Again direct computations using GAP and from the results of Ganief and Moori [8]
we get that Co2

∼= 〈a, b〉 where a ∈ 2A and b ∈ {5A, 5B, 6A, 6B, 6E, 6F, 7A, 8A, 8B, 8C,
8D, 8F, 9A, 11A, 12A, 23A, 23B}. Now for group Co2 we have the following power
maps (12A)2 = 6B, (12B)2 = 6A, (12D)2 = 6E, (12E)2 = 6B, (12F )2 = 6E,
(12G)2 = 6A, (12H)2 = 6E, (14A)2 = 7A, (14B)2 = 7A, (14C)2 = 7A, (15A)3 = 5B,
(15B)3 = 5A, (15C)3 = 5A, (16A)2 = 8D, (16B)2 = 8C, (18A)2 = 9A, (20A)2 = 10A,
(20B)2 = 10C, (24A)2 = 12C, (24B)2 = 12B, (28A)4 = 7A, (30A)2 = 15A, (30B)2 =
15B and (30C)2 = 15C. Using the above power maps together with information
from [8], we obtain that Co2 is (2A, nX,mY )-generated for nX /∈ {1A, 2A, 2B, 2C}
with appropriate mZ. Now applying Lemma 3, Co2 is (nX, nX, (mZ)2)-generated for
nX /∈ {1A, 2A, 2B, 2C}. Hence rank(Co2 : nX) = 2 where nX /∈ {1A, 2A, 2B, 2C}.

3 Ranks of Co3

The smallest Conway group Co3 is a sporadic simple group of order 210.37.53.7.11.23
with 14 conjugacy classes of maximal subgroups. The group Co3 has 42 conjugacy
classes of its elements. It has two conjugacy classes of involutions, namely 2A and
2B. For basic properties of Co3 we refer readers to [2], [3] and [7].

Lemma 14 rank(Co3 : 2X) = 3 where X ∈ {A,B}.
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Proof: Wolder [22] and Ganief and Moori [8] proved that Co3 is a Hurwitz group
by showing that Co3 is (2B, 3C, 7A)-generated. So again by Corollary 2, we have
rank(Co3 : 2B) ≤ 3. But rank(Co3 : 2B) = 2 is not possible, because if 〈x, y〉 = Co3

for some x, y ∈ 2B then Co3
∼= D2n with o(xy) = n. Thus rank(Co3 : 2B) = 3.

Now for the rank of involution 2A in Co3 we consider the triple (2A, 3C, 23A).
Using the character table of Co3 we compute that ∆Co3(2A, 3C, 23A) = 46. The only
maximal subgroup of Co3 containing elements of order 23, up to isomorphism, is M23.
But the conjugacy class 3C has empty intersection with M23. Thus Co3 contains no
proper (2A, 3C, 23A)-subgroup and we get ∆∗

Co3
(2A, 3C, 23A) = ∆Co3(2A, 3C, 23A) >

0. Now the result follows again applying Corollary 2.

Next we deal with the non-involution conjugacy classes of Co3.

Lemma 15 The group Co3 is (3A, 3A, 15A)-generated.

Proof: The only maximal subgroups of Co3 having non-empty intersection with
the classes 3A and 15A, up to isomorphisms, are M1

∼= McL:2, M2
∼= 2·S6(2),

M3
∼= U3(5):S3 and M4

∼= 31+4
+ :4S6. By considering the permutation character

values of Co3 on these maximal subgroups and their fusion maps into Co3 we ob-
tain that ΣM1(3A, 3A, 15A) = 6 = ΣM3(3A, 3A, 15A) and ΣM2(3A, 3A, 15A) = 0 =
ΣM4(3A, 3A, 15A). Hence

∆∗
Co3

(3A, 3A, 15A) ≥ ∆Co3(3A, 3A, 15A)− ΣM1(3A, 3A, 15A)− ΣM2(3A, 3A, 15A)

−ΣM3(3A, 3A, 15A)− ΣM4(3A, 3A, 15A)

= 46− 1(6)− 1(6) > 0.

This concludes that Co3 is (3A, 3A, 15A)-generated.

Corollary 16 rank(Co3 : 3A) = 2.

Proof: From the previous lemma we know that Co3 is (3A, 3A, 15A)-generated and
so we get that rank(Co3 : 3A) = 2.

Lemma 17 The group Co3 is (4A, 4A, 23A)-generated.

Proof: The only maximal subgroup of Co3 which has an order divisible by 23 is M23

and M23 ∩ 4A = ∅. Hence ∆∗
Co3

(4A, 4A, 23A) = ∆Co3(4A, 4A, 23A) = 414 > 0. This
shows that Co3 is (4A, 4A, 23A)-generated.

Lemma 18 The group Co3 is (4B, 4B, 23A)-generated.

Proof: The only maximal subgroups of Co3 which has an order divisible by 23 is
M23. The 4a and 23a are the only classes of M23 which fuse to 4B and 23A classes
of Co3 respectively. This implies that

∆∗
Co3

(4B, 4B, 23A) ≥ ∆Co3(4B, 4B, 23A)− ΣM23(4A, 4B, 23A)

= 174846− 7866 > 0,

proving that (4B, 4B, 23A) is a generating triple for Co3.
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Lemma 19 rank(Co3 : 3B) = 2.

Proof: The group Co3 is (3B, 3B, 23A)-generated (see [8], Corollary 3.2). Hence
rank(Co3 : 3B) = 2.

Theorem 20 If nX /∈ {1A, 2A, 2B} then rank(Co3 : nX) = 2.

Proof: If nX ∈ {3A, 3B, 4A, 4B} then rank(Co3 : nX) = 2 by the above Lemmas
14 to 19.

Direct computation using GAP and results from Ganief and Moori [8] show that
Co3 = 〈a, b〉 where a ∈ 2A, and b ∈ nX with nX ∈ {3C, 6A, 6B, 6C, 6D, 8A, 8B, 8C,
9A, 9B}. Since the power maps of Co3 yields (6E)2 = 3C, (10A)2 = 5A, (10B)2 = 5B,
(12A)2 = 6A = (12B)2, (12C)2 = 6C, (14A)2 = 7A, (15A)3 = 5A, (15B)3 = 5B,
(18A)3 = 6B, (20A)4 = 5A = (20B)4, (21A)3 = 7A, (22A)2 = 11B, (22B)2 =
11A, (24A)4 = 6A = (24B)4 and (30A)6 = 5A, we have Co3 = 〈a, c〉 where c ∈
{6E, 10A, 10B, 12A, 12B, 12C, 14A, 15A, 15B, 18A, 20A, 20B, 21A, 22A, 22B, 24A, 24B,
30A}.

Therefore Co3 is (2A, nX,mY )-generated where nX ∈ {3C, 6A, 6B, 6C, 6D, 6E, 8A,
8B, 8C, 9A, 9B, 10A, 10B, 12A, 12B, 12C, 14A, 15A, 15B, 18A, 20A, 20B, 21A, 22A, 22B,
24A, 24B, 30A} with appropriate mY . Hence rank(Co3 : nX) = 2 where nX /∈
{1A, 2A, 2B}.
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