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Abstract

Let G be a finite group and X a conjugacy class of G. We denote rank(G:X)
to be the minimum number of elements of X generating G. In the present
article, we determine the ranks for the Harada-Norton sporadic group HN.
Computations were carried with the aid of computer algebra system GAP [21].

1 Introduction and Preliminaries

There has recently been some interest in generation of simple groups by their conju-
gate involutions. It is well known that sporadic simple groups are generated by three
conjugate involutions (see [7]). If a group G = 〈a, b〉 is perfect and a2 = b3 = 1 then
clearly G is generated by three conjugate involutions a, ab and ab2 (see [8]). Moori
[17] proved that the Fischer group Fi22 can be generated by three conjugate involu-
tions. The work of Liebeck and Shalev [14] show that all but finitely many classical
groups can be generated by three involutions. The generation of a simple group by
its conjugate elements in this context is of some interest.

Suppose that G is a finite group and X ⊆ G. We denote the rank of X in G by
rank(G:X), the minimum number of elements of X generating G. This paper focuses
on the determination of rank(G:X) where X is a conjugacy class of G and G is a
sporadic simple group.

Moori in [15], [16] and [17] proved that rank(Fi22:2A) ∈ {5, 6} and rank(Fi22:2B) =
rank(Fi22:2C) = 3 where 2A, 2B and 2C are the conjugacy classes of involutions of
the smallest Fischer group Fi22 as presented in the ATLAS [5]. The work of Hall
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and Soicher [11] show that rank(Fi22:2A) = 6. Moori in [18] determined the ranks
of the Janko groups J1, J2 and J3. More recently, in a series of papers [1, 2, 3, 12]
with F. Ali, the author investigated the ranks for the sporadic group HS, McL, Co1

Co2, Co3, Ru, Suz and Th. In the present article we continue the study on the ranks
of sporadic simple groups and determine the ranks for the Harada Norton sporadic
simple groups HN.

For basic properties of HN, character tables of the groups HN and their maximal
subgroups etc. we use ATLAS [5] and [21]. For detailed information about the
computational techniques used in this paper the reader is encouraged to consult [1],
[2], [17], and [18].

Next we discuss some background material and introduce the notation. We adopt
the same notation as in the above mentioned papers. In particular, if G is a finite
group, C1, C2, · · · , Ck are the conjugacy classes of its elements and gk is a fixed
representative of Ck, then ∆G(C1, C2, · · · , Ck) denotes the number of distinct tuples
(g1, g2, · · · , gk−1) ∈ (C1 × C2 × · · · × Ck−1) such that g1g2 · · · gk−1 = gk. It is well
known that ∆G(C1, C2, · · · , Ck) is the structure constant ofG for the conjugacy classes
C1, C2, · · · , Ck and can be computed from the character table of G (see [13], p.45 )
by the following formula

∆G(C1, C2, · · · , Ck) =
|C1||C2| · · · |Ck−1|

|G|
×

m∑
i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)

[χi(1G)]k−2

where χ1, χ2, · · · , χm are the irreducible complex characters of G. Also, ∆∗
G(C1, C2,

· · · , Ck) denotes the number of distinct tuples (g1, g2, · · · , gk−1) ∈ (C1 × C2 × · · · ×
Ck−1) such that g1g2 · · · gk−1 = gk and G = 〈g1, g2, · · · , gk−1〉. If ∆∗

G(C1, C2, · · · , Ck)0,
then we say that G is (C1, C2, · · · , Ck)-generated. If H any subgroup of G containing
the fixed element gk ∈ Ck, then ΣH(C1, C2, · · · , Ck−1, Ck) denotes the number of dis-
tinct tuples (g1, g2, · · · , gk−1) ∈ (C1×C2×· · ·×Ck−1) such that g1g2 · · · gk−1 = gk and
〈g1, g2, · · · , gk−1〉 ≤ H where ΣH(C1, C2, · · · , Ck) is obtained by summing the struc-
ture constants ∆H(c1, c2, · · · , ck) of H over all H-conjugacy classes c1, c2, · · · , ck−1

satisfying ci ⊆ H ∩ Ci for 1 ≤ i ≤ k − 1.
The ATLAS serves as a valuable source of information and we use the Atlas

notation for conjugacy classes, maximal subgroups, character tables, permutation
characters, etc. A general conjugacy class of elements of order n in G is denoted by
nX. For examples, 2A represents the first conjugacy class of involutions in a group
G. We will use the maximal subgroups and the permutations characters of HN on
the conjugates (right cosets ) of the maximal subgroups listed in the ATLAS [5] ex-
tensively.

The following results will be crucial in determining the ranks of finite groups.

Lemma 1 (Moori [18]) Let G be a finite simple group such that G is (lX,mY, nZ)-
generated. Then G is (lX, lX, · · · , lX︸ ︷︷ ︸

m−times

, (nZ)m)-generated.
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Corollary 2 Let G be a finite simple group such that G is (lX,mY, nZ)-generated,
then rank(G : lX) ≤ m.

Proof: Immediately follows from Lemma 1.

Lemma 3 (Conder et al. [6]) Let G be a simple (2X,mY, nZ)-generated group. Then
G is (mY,mY, (nZ)2)-generated.

2 Ranks for the group HN

The Harada-Norton group HN is a sporadic simple group of order

273030912000000 = 214 × 36 × 56 × 7× 11× 19

with 14 conjugacy classes of maximal subgroups. It has 54 conjugacy classes of its
elements including two involutions, namely 2A and 2B. For an element g ∈ 5A in
the Monster group M, we have CM(g) ∼= 5 × HN. Norton [19] constructed HN as a
permutation group on 1140000 points. For basic properties of HN and computational
techniques, the reader is encouraged to consult [1], [4], [10], [19] and [22].

We now compute the rank of each conjugacy class of HN.

It is well known that every sporadic simple group can be generated by three
involutions (see [8]). In the following lemmas we prove that HN can be generated by
three conjugate involutions a, b, c ∈ 2X where X ∈ {A,B}.

Lemma 4 The sporadic group HN is (2X, 2X, 2X, 40A)-generated where X ∈ {A,B}.

Proof: First we treat the case X = A. Simple computations show that the structure
constant ∆HN(2A, 2A, 2A, 40A) = 2240. By looking into the maximal subgroups of
HN given in the ATLAS [5], we observe that the only maximal subgroups having
non-empty intersection with the conjugacy classes 2A and 40A are, up to isomor-
phism, 2·HS.2, (D10×U3(5))·2, (A6×A6)·D8 and 51+4

+ :21+4
− .5.4. A fixed element of

order 40 in HN is contained in precisely two conjugate of (A6 × A6) · D8 and in a
unique conjugate of each 2·HS.2, (D10×U3(5))·2 and 51+4

+ : 21+4
− .5.4. Our computa-

tions show that Σ2·HS.2(2A, 2A, 2A, 40A) = 960, and Σ(D10×U3(5))·2(2A, 2A, 2A, 40A) =
Σ(A6×A6)·D8(2A, 2A, 2A, 40A) = Σ51+4

+ :21+4
− .5.4(2A, 2A, 2A, 40A) = 0. Therefore,

∆∗
HN(2A, 2A, 2A, 40A) ≥ ∆HN(2A, 2A, 2A, 40A)− Σ2·HS.2(2A, 2A, 2A, 40A)

= 2240− 960 > 0.

This concludes that HN is (2A, 2A, 2A, 40A)-generated.
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Next consider the case X = B. For this case 2·HS.2, (D10×U3(5))·2, (A6×A6)·D8

and 51+4
+ :21+4

− .5.4 are, up to isomorphisms, the only maximal subgroups of the group
HN that may contain (2B, 2B, 2B, 40A)-generated proper subgroups of HN. We cal-
culate ∆HN(2B, 2B, 2B, 40A) = 1461574400, Σ2·HS.2(2B, 2B, 2B, 40A) = 1107200,
Σ(D10×U3(5))·2(2B, 2B, 2B, 40A) = 0, Σ(A6×A6)·D8(2B, 2B, 2B, 40A) = 0 and Σ51+4

+ :21+4
− .5.4

(2B, 2B, 2B, 40A) = 0. Thus

∆∗
HN(2B, 2B, 2B, 40A) ≥ ∆HN(2B, 2B, 2B, 40A)− Σ2·HS.2(2B, 2B, 2B, 40A)

= 1461574400− 1107200 > 0.

Hence, HN is (2X, 2X, 2X, 40A)-generated where X ∈ {A,B}.

Corollary 5 rank(HN : 2X) = 3 where X ∈ {A,B}.

Proof: Let X ∈ {A,B}. Then the previous lemma implies that rank(HN : 2X) ≤ 3.
But the case rank(HN : 2X) = 2 is not possible since if there are x, y ∈ 2X such
that HN =< x, y >, then HN ∼= D2n where n = o(xy). This shows that rank(HN :
2A) = 3 = rank(HN : 2B).

Lemma 6 Let nX be a conjugacy class of he sporadic group HN such that nX 6∈
{1A, 2A, 2B}. Then HN is (2A, nX, 40A)-generated.

Proof: The investigation of the (2A, nX, 40A)-generation of the group HN will re-
quire knowledge of all the maximal subgroups of HN having elements of order 40.
They are, up to isomorphisms, H1

∼= 2·HS.2, H2
∼= (D10×U3(5))·2, H3

∼= (A6×A6)·D8

and H4
∼= 51+4

+ : 21+4
− .5.4. Also a fixed element z ∈ 40A is contained in precisely two

conjugate of H3 and in a unique conjugate of each of H1, H2 and H4. Now, our main
proof will consider a number of cases.

Case 1: Let nX ∈ T1 = {9A, 15B, 15C, 19A, 19B, 21A, 30B, 30C}. From the
fusion maps of the maximal subgroups of HN into the group HN, we observe that there
is no maximal subgroup of HN that may contain (2A, nX, 40A)-generated proper
subgroups and hence no proper subgroup of HN is (2A, nX, 40A)-generated. Using
Table I, we obtain that

∆∗
HN(2A, nX, 40A) = ∆HN(2A, nX, 40A) > 0.

Therefore, the group HN is (2A, nX, 40A)-generated where nX ∈ T1.
Case 2: nX ∈ T2={11A, 22A}. The only maximal subgroup of HN having non-

empty intersection with the conjugacy classes in the triple (2A, nX, 40A) where nX ∈
T2 is isomorphic to H1. It is evident from Table I that

∆∗
HN(2A, 11A, 40A) = ∆HN(2A, 11A, 40A)− ΣH1(2A, 11A, 40A) > 0

∆∗
HN(2A, 22A, 40A) = ∆HN(2A, 22A, 40A)− ΣH1(2A, 22A, 40A) > 0.
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Hence HN is (2A, 11A, 40A)−, and (2A, 22A, 40A)-generated.
Case 3: nX ∈ T3 = {35A, 35B}. Amongst the maximal subgroups of HN, the

only maximal subgroup with non-empty intersection with the classes in the triple
(2A, nX, 40A) for nX ∈ T3, is isomorphic to H2. We can easily see that for nX ∈ T3,
we have ∆∗

HN(2A, nX, 40A) = ∆HN(2A, nX, 40A) > 0, proving that (2A, 35A, 40A)
and (2A, 35B, 40A) are the generating triples for HN.

Case 4: nX ∈ T4 = {10D, 10E, 20D, 20E, 25A, 25B}. H3 is the only maximal
subgroup of HN with non-empty intersection with any conjugacy class in the triple
(2A, nX, 40A) where nX ∈ T4. We calculate that in each case ∆∗

HN(2A, nX, 40A) =
∆HN(2A, nX, 40A) − 2ΣH3(2A, nX, 40A) > 0. Hence HN is (2A, nX, 40A)-generated
where nX ∈ T4.

Case 5: nX ∈ T5 = {3B, 6C, 12C}. H4 is the only maximal subgroup of HN which
meets the classes in the triple (2A, nX, 40A) in this case. But ΣH4(2A, nX, 40A) = 0
for each nX ∈ T5. Thus ∆∗

HN(2A, nX, 40A) = ∆HN(2A, nX, 40A) > 0, proving that
(2A, nX, 40A) is the generating triples for HN.

Case 6: nX ∈ T6 = {7A, 12B, 14A, 30A}. The maximal subgroups of HN with
non-empty intersection with all the classes in the triple (2A, nX, 40A) for nX ∈ T6 are,
up to isomorphisms, H1 and H2. We calculate, using Table I, ∆∗

HN(2A, nX, 40A) ≥
∆HN(2A, nX, 40A) − ΣH1(2A, nX, 40A) − ΣH2(2A, nX, 40A) > 0 and generation by
the triple (2A, nX, 40A) for nX ∈ T6 follows.

Case 7: nX ∈ T7 = {10G, 10H}. Amongst the maximal subgroups of HN,
H1 and H3 are the only maximal subgroup which may contain (2A, 10G, 40A)- and
(2A, 10H, 40A)-generated proper subgroups. But

ΣH1(2A, 10G, 10H) = 0 = ΣH3(2A, 10H, 40A)

ΣH1(2A, 10G, 10H) = 0 = ΣH3(2A, 10H, 40A)

Therefore,

∆∗
HN(2A, 10G, 40A) = ∆HN(2A, 10G, 40A) = 25257687040

∆∗
HN(2A, 10H, 40A) = ∆HN(2A, 10H, 40A) = 25257687040

proving the generation of HN by these triples.
Case 8: Consider the triple (2A, 4C, 40A). The only maximal subgroups of HN,

having non-empty intersection with the classes in this triple are isomorphic to H3 and
H4. We calculate using Table I that, ΣH3(2A, 4C, 10H) = 0 = ΣH4(2A, 4C, 40A) and
we obtain

∆∗
HN(2A, 4C, 40A) = ∆HN(2A, 4C, 40A) = 15744000.

Hence HN is (2A, 4C, 40A)-generated.
Case 9: Consider the triple (2A, 5C, 40A) and (2A, 5D, 40A). The only maximal

subgroups of HN with non-empty intersection with the classes in these triples are
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isomorphic to H2 and H3. We calculate ΣH2(2A, 5C, 40A) = 576 = ΣH2(2A, 5D, 40A)
and ΣH3(2A, 5C, 40A) = 0 = ΣH3(2A, 5D, 40A). Hence (2A, 5C, 40A) and (2A, 5D, 40A)
are the generating triples for HN since ∆HN(2A, 5C, 40A) = 690016 = ∆HN(2A, 5D, 40A).

Case 10: nX ∈ T8 = {5B, 10A, 10C, 20A, 20B}. The maximal subgroups of
HN with non-empty intersection with all the classes in the triple (2A, nX, 40A) for
nX ∈ T8 are, up to isomorphisms, H1, H2 and H3. Using Table I, we compute

∆∗
HN(2A, nX, 40A) ≥ ∆HN(2A, nX, 40A)− ΣH1(2A, nX, 40A)

−ΣH2(2A, nX, 40A)− 2ΣH3(2A, nX, 40A) > 0

proving generation of HN by the triple (2A, nX, 40A) for nX ∈ T8 follows.
Case 11: nX ∈ T9 = {3A, 6A, 6B, 12A, 15B}. H1, H2 and H4 are only maximal

subgroups of HN that may contain (2A, nX, 40A)-generated proper subgroups where
nX ∈ T9. Thus,

∆∗
HN(2A, nX, 40A) ≥ ∆HN(2A, nX, 40A)− ΣH1(2A, nX, 40A)

−ΣH2(2A, nX, 40A)− ΣH4(2A, nX, 40A) > 0

and generation of HN by the triple (2A, nX, 40A) where nX ∈ T9 follows.
Case 12: Consider the triple (2A, 8B, 40A). For classes in this triple the maximal

subgroups of HN which have non-empty intersection are, up to isomorphisms, H1, H3

and H4. Therefore by Table I, we calculate,

∆∗
HN(2A, 8B, 40A) ≥ ∆HN(2A, 8B, 40A)− ΣH1(2A, 8B, 40A)

−2ΣH3(2A, 8B, 40A)− ΣH4(2A, 8B, 40A) > 0.

Thus HN is (2A, 8B, 40A)-generated.
Case 13: nX ∈ T10 = {4A, 4B, 5A, 5E, 8A, 10A, 10F, 20C, 40A, 40B}. The only

maximal subgroups of HN with non-empty intersection with all the classes in the
triple (2A, nX, 40A) where nX ∈ T10 are, up to isomorphisms, H1, H2, H3 and H4.
Our calculations give, (see Table I) in each case we obtain

∆∗
HN(2A, nX, 40A) ≥ ∆HN(2A, nX, 40A)− ΣH1(2A, nX, 40A)− ΣH2(2A, nX, 40A)

−2ΣH3(2A, nX, 40A)− ΣH4(2A, nX, 40A) > 0.

Therefore HN (2A, nX, 40A)-generated for each nX ∈ T10. This completes the proof
of lemma.

We now give the main result of the paper.

Theorem 7 Let nX be a conjugacy class of the group HN. such that . Then

(i) rank(HN : nX) = 3 if nX ∈ {2A, 2B}

(ii) rank(HN : nX) = 2 if nX /∈ {1A, 2A, 2B}
Proof: We proved in the previous lemma that the group HN is (2A, nX, 40A)-
generated for nX /∈ {1A, 2A, 2B}. Applying Lemma 3, we obtain that the group
HN is (nX, nX, (40A)2)-generated and hence rank(HN : nX) = 2 where nX /∈
{1A, 2A, 2B}. The proof now follows by Corollary 5.
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Table I: Structure Constants

tX 3A 3B 4A 4B 4C 5A
∆HN(2A, nX, 40A) 240 299840 741440 8013680 15744000 128
ΣH1 (2A, nX, 40A) 0 - 1600 28800 - 0
ΣH2 (2A, nX, 40A) 0 - 0 9440 - 48
ΣH3 (2A, nX, 40A) - - 0 0 0 0
ΣH4 (2A, nX, 40A) 0 0 0 1360 0 0

tX 5B 5C 5D 5E 6A 6B
∆HN(2A, nX, 40A) 320 690016 690016 37597104 113997360 809681840
ΣH1 (2A, nX, 40A) 0 - - 0 114080 157920
ΣH2 (2A, nX, 40A) 0 576 576 1344 240 4160
ΣH3 (2A, nX, 40A) 0 0 0 0 - -
ΣH4 (2A, nX, 40A) - - - 0 0 0

tX 6C 7A 8A 8B 9A 10A
∆HN(2A, nX, 40A) 1980103680 1546088400 42014895040 65653408000 368894940480 52419360
ΣH1 (2A, nX, 40A) - 0 547840 684800 - 0
ΣH2 (2A, nX, 40A) - 0 112320 - - 0
ΣH3 (2A, nX, 40A) - - 0 0 - 0
ΣH4 (2A, nX, 40A) 0 - 0 3200 - -

tX 10B 10C 10D 10E 10F 10G
∆HN(2A, nX, 40A) 185938536 425098560 673315840 673315840 26863501600 25257687040
ΣH1 (2A, nX, 40A) 10104 0 - - 0 0
ΣH2 (2A, nX, 40A) 5016 6240 - - 3840 -
ΣH3 (2A, nX, 40A) 0 0 0 0 0 0
ΣH4 (2A, nX, 40A) 0 - - - 0 -

tX 10H 11A 12A 12B 12C 14A
∆HN(2A, nX, 40A) 25257687040 555614906080 51880630720 116731738880 1895848980480 348241723840
ΣH1 (2A, nX, 40A) 0 0 414720 0 - 1811760
ΣH2 (2A, nX, 40A) - - 33280 33280 - 51840
ΣH3 (2A, nX, 40A) 0 - - - - -
ΣH4 (2A, nX, 40A) - - 0 - 0 -

tX 15A 15B 15C 19A 19B 20A
∆HN(2A, nX, 40A) 7923376064 296506368000 296506368000 756318114720 756318114720 42653088000
ΣH1 (2A, nX, 40A) 0 - - - - 885760
ΣH2 (2A, nX, 40A) 144 - - - - 12480
ΣH3 (2A, nX, 40A) - - - - - 0
ΣH4 (2A, nX, 40A) 0 - - - - -

tX 20B 20C 20D 20E 21A 22A
∆HN(2A, nX, 40A) 42653088000 168069677296 667178496000 667178496000 619086986240 555614906080
ΣH1 (2A, nX, 40A) 885760 0 - - - 0
ΣH2 (2A, nX, 40A) 12480 53616 - - - -
ΣH3 (2A, nX, 40A) 0 0 0 0 - -
ΣH4 (2A, nX, 40A) - 10640 - - - -

tX 25A 25B 30A 30B 30C 35A
∆HN(2A, nX, 40A) 427018524000 427018524000 71291952576 296506368000 296506368000 222926845856
ΣH1 (2A, nX, 40A) - - 397728 - - -
ΣH2 (2A, nX, 40A) - - 2496 - - 7776
ΣH3 (2A, nX, 40A) 0 0 - - - -
ΣH4 (2A, nX, 40A) - - - - - -

tX 35B 40A 40B
∆HN(2A, nX, 40A) 222926845856 168069677296 168069677296
ΣH1 (2A, nX, 40A) - 0 0
ΣH2 (2A, nX, 40A) 7776 5616 5616
ΣH3 (2A, nX, 40A) - 0 0
ΣH4 (2A, nX, 40A) - 0 0
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