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Abstract: The problem of minimising the dynamic response of an anisotropic rectangular plate
with minimum possible expenditure of force is presented for various cases of boundary conditions.
The plate has a principal direction of anisotropy rotated at an arbitrary angle relative to the
coordinate axes. This crientation angle has been taken as an optimisation design parameter. The
control problem is formulated as an optimisation problem by using a performance index, which
comprises a weight sum of the control objective and penalty function of’ the controt force. The
explicit solutions for the closed-loop distributed control function is obtained by means of Liapunov-
Bellman theory. To assess the present solution, numerical results are presented (o illustrate the
effect of anisotropy ratio, orientation angle, aspect ratio and boundary conditions on the control
process.
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1. Introduction

The rapid development of various industrial fields requires new materials that can serve
useful functions under certain conditions. In aerospace industry and many other engineering
applications, the suppression of excessive vibrations occurring in large structures represents one of
the most pressing and difficult problems facing structural designers. An effective means of
suppressing excessive vibrations is by active structural control. Thus, there is need for new light
materials possessing a high degree of flexibility and with very low natural dampirg. These factors
motivated the development of more accurate tools of analysis and rigorous design methods.
Therefore, the optimal control problems of dynamical systems have tong been a main subject of
many studies and up-to-date lists of publications in this area is given in survey articles [1-5].

Most recently, the strong interaction between structural control and design optimisation has
been recoguized. As a result, sunultaneous design and control has been the subject of several
research studies with a view towards integrating optimal design and active control in a single
formulation. For instance, in Refs. [6-11], the design control problem was formulated as a
constrained optimisation problem.

A series of publications has been concerned with the fundamental considerations of these
approaches and their applications to different dynamical systems. Sloss and others [ 12,13]
presented a maximum principle for the optimal control of a general class of dynamical systems with
distributed parameters. Within the theoretical framework of these studies, optimal distributed
control results were obtained for membranes by Sadek and Adali [14], for thick beams by Sadek

and others [15-17], for continuous beams by Sadek et al. [18], for Mindlin-Timoshenlo plates by
525
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Sadek et. al. [19] and for orthotropic plates by Adali et al. [20], Other studies may be found in [2]-
26]. For these studies, however, there have been considerably few papers concerned with
anisotropic structures with various boundary conditions.

The objective of the current work deals with the optimal contro! of the dynamic response of an
anisotropic rectangular plate possessing a principal direction of anisotropy rotated at an arbitrary
angle relative to the coordinate axes. This orientation angle may be taken as optimisation design
parameter. Various cases of boundary conditions are considered. The present control problem is the
minimisation of the dynamic response of a damped plate with the minimum possible expenditure of
force. Control over the plate is exercised by distributed forces, which translate into force in the
actual implementation of the control mechanism. The dynamic response of the anisotropic plate
comprise its deflection and velocity which constitute muitiple objectives of the control problem
together with the expenditure of force. The dynamic response is related 1o the energy of the
structure, which is subject to initial disturbances. A quadratic functional of the dynamic response is
specified as the control performance index. The expenditure of force is lunited by attaching a
functional of force to the objective functional as a penalty term. The necessary and sufficient
conditions for optimal stabilization in Liapunov-Bellman sense [27] are used to determine the
control force and deflections. Numerical example 1s given to study influences of anisotropy ratio,

orientation angle, aspect ratio, and boundary conditions on control process.

2. Formulation of the problem

Consider an anisotropic rectangular plate of length a, width b, and thickness A .The

mid-plane of the plate coincides with xy- plane and normai to z- axis as shown in figure 1.

Figure 1, The plate with fibers orientated at an arbitrary angle 8 relative to the coordinate system.
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The material of the plate is assumed 1o possess a principal direction of elasticity rotated at
an angle @ refative to x- direction. Let the plate be subjected to distributed force ¢(x, y, 7) act
on the upper surface of the plate.

The fundamental differential equation governing the motion of the plate is given by [28]:

phw+Diw  +2Dw o+ D,Zw oy TAD W+ 4(D,6w + Dzo“ - )= q,

(1)
where w is the plate deflection in the z- direction, p is the material density, the superposed
dot denotes differentiation with respect to time and ( ), denotes partial differentiation with

respect to corresponding coordinate, D; = B,#’N12 are the rigidities of the plate, which are
related to the fundamental elastic constants B, are presented in [28]:

The present control problem accounts for various cases of boundary conditions at
edges, i.e., when the plate edges are Simply Supported (S), or Clamped (C) or Free (), or
when mixed of these boundary conditions are prescribed over edges. These boundary
conditions on edges perpendicular to x-axis (for example):

C: w=w, =0,

S ow= Dl. W T DI‘ZW, ~2D W, = {),

i6

F: Diw, +Dlw,, +2Dw,, = Diw o +3Dw .+ (D), + 200 Jw  + Digw =0, @)

207 gy

Also, we assume that the plate is subjected to the following initial conditions:

ey 0)=vlxy),  ixnr0)=glxy). 3)

3. Optimal control problem

The objectives of the present study are to determine the optimal control force ¢°and
optimal design variable &, to minimise the dynamic response of the Jamina in a specified
time 0 < ¢ < ¢ £ oo, the dynamic response of the plate is measured by a cost functional
related to the energy of the system. The strain and kinetic energies of the plate made up of

linear elastic material, respectively are [ 28] :

1 ¢ .
J (q,tg —E r [D],w +ZD|Zw o'y +DQ,u +4D6(,w” +4(mejr +D26w”w)wvw}dxdydl > )
] ~ I 2
J\g.8)=—ph r v dxdydt
da.0)=gon] | [ty 5)

The mathematical formulation of the cost functional may be chosen as:

Jq. ) =5 + &0, +EJ,, (6)
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where & > 0, (/= 1, 2, 3) are constant weighting factors and the functional ./; is a penalty
term involving the control function geL’, where L denotes the set of all bounded square
integrable functions on {0<x <a, 0Ly <, 0<¢ < T< o}, and given by:

rJ‘b'fuq r Yl cbcdv (7)
000

Thus, the dynamic response of the plate is expressed as functionals of w, its spatial
derivatives and w given by J; and. J; Then, the present multiobjective control problem is to
determine: firstly, the optimal control function ¢“ from the minimisation condition of the
functional / and secondly, the optimal orientation angle 6,, which minimising the total

elastic energy J;, (=J,+J3).

4. Solution procedure

Under the above specific conditions, we can expand the displacement function w and

the control function ¢ in the following double series:
w=X W) g=3 0. [xkrD), (8)

where W,, and (),, are unknown functions of time, X (x) and ¥ (y) are continuous
orthonormed  eigenfunctions which satisfy the boundary conditions given in (2) and
represent approximate shape of the deflected surface of the free vibrating plate. These
functions for the different cases of boundary conditions take the following forms [29]:
SS X(x) =siny,x, M, =mala.
CC X(x) =siny,x-sinh g, x-17, (cos 4, x —cosh ,umx) )

", = (sin 1, a—sinh pma) (cos M,.a—cosh y”,a), H, = (m + 0.5_};1/(1 .
Cs: X(x) =sin,x—sinh g, x -1, (cos £, x — cosh ;zmx) )

Ve = (sin H,a+sinh y,"a)/(cos 4,0+ cosh ,uma) . M, = (m + 0.25)!7/:1 .
CF X(x) =sing, x —sinhy x-7, (cos 4, x —cosh ymx) )

U = (sin M,a+sinh ;ema)/(cos 4, a+cosh y,,,a) M =1875/a, w, =4.6%/a

6, =7855/a, u,=109%/a and A = (m —0.25)7[/(2 for m=3.

Substituting formulae (8} into equation (1), then, multiplying both sides of the resulting equation
by X¢x) Y1y, and integration over the domain of solution, we get:

1

W +w W = ,
nr mn mn hp inn (9)
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] . . . . . .
(Unzm = Hl_p [D]I,I +2D 1, + 2(Du + ZDMJ)[S +4Dy1, +D22]ﬁ]» (10)
6

Substituting the relations (8) into expressions (4) and (5), we can easily get:

) w @ @©

S [ eman, 5= [ e (1)

n=l @ m=i n=1 0

P

J, =

i

e, =1 (DI, + 2Dty + 2D 1, + 4D, + D51, + apyI,), e =Lhptl, .

16711

XY )X¥dxdy

eyt x oyt B

(11.12,f3,14,15,1,,)=ff(x_wy,x,wx),,x Yo X ¥ XY
o0

b

(177157197]“)?111’[12): J‘ I
0

o

(X.?U'Yz ' ‘)(.M Y.xv X : Y\zw ’

{\fthj ’ X,xl A’,I Y,'vYV X,,IX }/,_vy Y,y xdy’

Using the expressions (7) and (11} in (6), the functional f takes the form:

J=Z;Z|:J (12)

Jmn = _[ (elﬁfl:n + e?”%rzin + e}Q/in)dI ’ 63 = 61 ’h * (13)
0

To minimise the functional ./, we apply Liapunov-Bellman theory [27] that gives the

minimisation condition in the form:

oV . . _
minf —7pY 4 Py 4 =0 (14)
o=¢"t OW ow,,
where ¥, is a Liapunov {unction and may be chosen in the form:
V=0, W2 +2e W W _+n W2,
F il w”!ﬂ mn nn I mn nﬂ}n mn ( l 5)

J,.is the integrand of (13), Pwns €mn and 7, are parameters chosen according to the

condition that the Liapunov function ¥, is positive definite. Then, from expressions

(13)-(15), we can obtain the optimal control force in the form:

—1 .
o = ———\E IV a7 W),
an P ]163 ( !V oan 7, i mn) (16)

substituting equations (9) and (16) into (14), and equating the coefficients of >, }> and

win ¥ mn

W,,W,,by zero, we get a system of equations, the general solution of this system is:

2 [ % In o
€mn =€y [wnm - a)mn +€| /EJ )’ Unm = (2£mn +el) €4

(plrm = Emu (a):m + r’mn /e-l )‘ €y = ch 293- ( 1 7)

The signs before the square roots are chosen according to the condition on Liapunov

functions. On the other hand, we can rewrite the equation (9) as follows:
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Pan + amnWmn + Q:man = 0 , amn :_2_?7—1‘".%— > erm = w.:m + -2-8% . (lg)
h'pre, h' pie,
The solution of equation (18) for which 2Q,  >a,,, is given by:
We, =, coslv )+ 7 sinlv,, )], V2 =02 -4l (19)

where g3, and y, are unknown coefficients which may be obtained from the initial

conditions (3) by expanding it in series, then:

_a,f..t24,, _ 4
Vom = 2v ’ ('H"'"’A'"")‘ abw

; I !(W»clf')XYd*'d% (20)

I'rom the above expressions we can obtain the optimal control force and the total

elastic energy for various boundary conditions.

5. Numerical results and discussion

In this section, numerical results lor the optimal deflections w°, force ¢° and the total
elastic energy J; are presented when the plate is orthotropic, In this case, the engineering
constants are introduced instead of the elastic constants from the relations:

E v, E, E
: By =—2—=—, By = ?

8, = [ ’
—Vpy

B =Gy By = By, =0, 2N

TR L~y
1nr2 12721

where £; are Young’s moduli; v, are Poisson's ratios and G are shear moduli. The
Poisson’s ratios and Young's moduli are related by the reciprocal relations
v,E =v,E (i, j =1,2). The initial conditions (3) are chosen in the form :

w (x,y,O): ().ZX(X) Y(y), W (x,y,()): 0. (22)
We introduce the dimensionless quantities x = x/a, ¥y = y/b,

W=wl/a, wW=wla, § =a3q/(E2hJ) , q=aq’ /(EJ’]), T=£—£— £ /p. (23)

In all calculations, unless otherwise stated, the following parameters are used ,
E/E, =40, G,/E =05, v,=025 ¢§=§=1, & =01,
which are typical of carbon fiber reinforced plastic. All curves for displacement and force
functions are given at the midpoint ¥ =0.5, y =0.5,and the four letters of the boundary
conditions ( SSCC, SCCF, ... ,etc.) with its order from left to right indicate the kind of
fixing at the plate edges x=0, x=q, y=0 and y=b, respectively.
Table 1 gives values of the optimal orientation angle &, by degrees, at which the total

clastic energy J;; takes minimuwm values for different cases of boundary conditions and for
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different values of ortholropy ratio £/E; and aspect ratio @/b. Note that, the orientation
angle 0 which gives the minimum energy strongly depends on the materiat and geometric
parameters of the plate and on the boundary conditions. Fig. 2 shows curves of clastic
energy plotted against the orthotropy ratio £ /E, for the cases CSCC and CCCF. Observe
that, the control process using the orientation angle # considerably reduces the elastic
energy of the plate as compared to non-optimal one. Moreover, the advantage of this type of
control becomes more obvious in plates with high orthotropy ratio £/E; .

Fig. 3 shows elastic energy curves plotted against the aspect ratio a/b for the cases
SSCC and SS8SS. These curves indicate that in short plates, a/h < 2, the effect of the
oricntation angle 8 on the optimisation control process plays more significant role in
minimising the dynamic response of the plate. Fig. 4 contains curves of the elastic energy
J1; against the time and aspect ratio a/b. The behavior of the damped deflection of the plate
with respect to time is studied in Fig. 35, for cases CCCC and CFCF. Figs 4 and 5 confirm
the previous discussion for all cases of boundary conditions.

Figs 6 and 7 show behavior of the dimensionless optimal control force 7° with respect
to time. These figures confirm that the control by the orientation angle @ not only plays an
efficient role in minimising the dynamic response, but it also contributes significantly in
reducing the expenditure of the used force for all cases of boundary conditions. Thus, the
present simultancous control using design parameters and a distributed force is considered

an eftective mean for damping the dynamic response.

@b EJE; 5SS SSCS SSCC CSCC CSCS CCCC CCCF SSCE CFCF CSCF

2 25.6 45 62 39.7 18.9 0 0 0 29 8.1

0.8 10 35 45 34 423 7 0 0 0 20 8.7
40 35.5 45 53 42.6 325 0 0 0 19 8.9

2 45 62.4 90 50 45 45 0 0 55 8.6

1 10 45 54.8 90 64.4 45 45 0 0 68 9.2
40 45 54.4 90 62.9 45 45 0 0 70 9.5

2 63.5 90 90 50 1.1 80 0 0 63.5 8.8

1.25 10 55 84.6 920 90 58.3 90 0 0 69.5 9.3
40 54.5 80.1 90 90 67.5 80 0 0 70 u.7

2 90 90 90 90 90 90 0 0 66.5 89

1.5 10 76 90 90 90 90 90 0 0 70 9.1
40 74 90 90 90 90 90 Y 0 70 9.5

2 90 90 90 90 90 90 0 50 70 9.5

2 10 90 90 90 90 90 90 0 50 71 8.3
40 90 90 90 90 90 90 0 90 70.5 8.6

Table |. Values of optimal orientation angle 6, which minimising total elastic energy against I/, and a/h.
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Fig.2. Elastic energy plotted against £,/E, a/b =2 for:
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Fig.3. Elastic energy plotted against aspect ratio a/b, for various values of ¢ for:

(@) SSCC case; {(b) SSSS case.
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Fig.4. (a) Elastic encrgy plotted against time T, a/b =1 for SSCC and for various values of 4 .
(b) Elastic energy plotted against a/b for various values of E,/E;and CCCC
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Fig.6. The optimal control force §° plotted against time , a/b =1 for:
(a) SSSS case; (b) SSCC case
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Fig.7. The optimal contro! force 7 plotted against time, a/b =2 for:
{a) SSCF case; (b) CSCS case.



il
o
v

Y G YOUSSIF, M E FARES and M. A HAFIZ

References:

1. J N. Yang and T.T. Soong, Recent advances in active control of civil engineering
structures Probabilist. ngng Mech. 3, 179-188 (1988).

2. R, K. Miller, S. F. Masni, 1. J. Dehganyer and T. K. Caughey, Active vibration control of large cival
structures. ASCE J. Engng Mech. 114, 1542-1570 (1988).

3. A. M. Reinhorn and G. D. Manolis, Recent advances in structural control . Shock Vibr. Dig 21, 3-8
(1989).

4 L. Arthur Jr. Bryson, Optimal control- 1950 to 1985. IEEE Control systems.26-33 (1996).

5. J. Hector Sussmann and C.Willems, 300 years of optimal control: from the brachystochrone to the
maximum principle. /EEE Control systems. 32-44 (1997).

6. M.A. Langthjem,Y. Sugiyama, (2000). Optimum design of cantilevered columns under the combined of
conservative and nonconservative loads Part [I: The damped case. Computers& Structures 74,399-408

7. Q. Wang, KM. Liew, A Theory for reduced order control design of plate systems. Journal of Applied
Mechanics 64, 332-537 (1997).

8. R. V. Grandhi, Structura! and conlrol optimization of space structures. Struct. 31, 139-150 (1989).

9. N. S. Khot, Structure/control optimization to improve the dynamic response of space struclures.Comput.
Mech 3, 179-186 (1988).

10. V. B. Venkayya and V. A. Tischler, Frequency control and its effect on the dynamic response of flexible
structures. AIAA Jni 23, 1768-1774 (1985).

11. V. Komokov, Simultanrous control and optimization for elastic system. Workshop on Applications of
Distributed System Theory to the Control of Large Space Structures, 14 -16 July 1982, Jet Propulsion
Laboratory, NASA (Edited by G. Rodriguez), pp.391-408 (1983).

12. ). M. Sloss, I. C. Bruch, Jr. and [. S. Sadek, A maximum principal for non-conservative seit-adjoint
systems. IMA J. Math. Control & Inf 6, 199-216 (1989).

13. U. Ledzewicz, Extension of the local maximum principle control problem. Jowrnal of Optimization
Theory and Applications,77,No.3, 661-680 (1993),

14. 1. S. Sadek and §. Adali, Contro! of the dynamic response of a damped membrane by distributed forces.
J. Sound Vibration 96, 391-406, (1984),

15. I. S. Sadek, Variational methods for the distributed control of & vibrating beam. Optimal Control Appl.
Methods. 9, T9-85, (1988).

16. Julio F. Davalos, Pizhong Qian, A computational approach for analysis and optimal design of FRP
beams. Computers & Strutures, 70, 169-183 (1999).

17. Seung-Yop Lee,C.D. Mote,Jr. Wave characteristics and vibration control of translating beams by optimal
boundary damping. Journal of vibration and acoustics,121, 18-25 (1999).

18. [.S.sadck, S. Adali, I. M. Sloss and J. C. Bruch, Jr., Optimal distributed control of a continuous beam
with damping, J. Sound Vibration 324, 207-218, (1987a).

19. I. S, Sadek, J. M. Sloss, I. C. Bruch, Jr. and 8. Adali. Structucal conirol to minimize the dynamic
response of Mindlin-Timoshenko plates. J. Franklin Inst. 324, 97-112, (1987b).

20. S. Adali, 1. S. Sadek, J. M. Sloss and J. C. Bruch, Ir. Distributed control of layered orthotropic plates
with damping. Optimal Control Appl. Methods 9, 1-17, (1988).

21. Y.G.Youssif, MN.M. Allam and AE. Alamir. Optimal stabilization of a compressed elastic shallow
shell. J.Egypt. Math. Soc. 6(2), 233-244, (1998).

22. Y.G Youssif. The influence of the in-plane compression on the optimal stability of a vibrating cylindrical
shell. S Egypt. Math. Soc. 7(2) (1999).

23. N. Tanaka, Y. Kikushima, Optimal vibration feedback control of an Euler-Bernoulli beam: Toward
realizationol the active Sink method. Jowrnal of vibration and acoustics, 121, 174-182 (1999).

24. Dong-Hua Shi, S.H.Hou and De-Xing Feng, Feedback stabilization of a Timoshenko beam with an end
mass. J. Sound Vibration 69(2), 285-300, (1998).

25 Y Xiang, C.M. Wang, and S. Kitipornchai, Optimal design of internal ring support {or rectangular plates
against vibration or buckling. J. Sound Vib. 116, 545-554 (1996).

26 J.C. Bruch, S. Adali, J.M. Stoss and .S, Sadek, Optimal design and control of cross-ply laminate for
maximum frequency and minimum dynamic response. Computers & structures. 37, 87-94 (1990).

27. M. §. Gabralyan. The stabilization of mechanical systems under continuous forces. YGU Yervan 2, 47-
s6, (1975).

28. 8. G. Lekhmtski, Theory of Elasticity of anisotropic plates, Gordon and Breach, New York, (1968).

29. ). N. Reddy. Mechanics of Composite Materials and structures. Theory and Analysis, CRC Press.
Florida. 1997,



