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Abstract: A group G is said to be (2, 3, t)-generated if it can be generated by two elements x and y such that
o(x) = 2, o(y) = 3 and o(xy) = t. In this paper, we determine (2, 3, t)-generations of the Tits simple group
T ∼= 2F4(2)

′ where t is divisor of |T|. Most of the computations were carried out with the aid of computer algebra
system GAP [17].
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1 Introduction
A group G is called (2, 3, t)-generated if it can be gen-
erated by an involution x and an element y of order 3
such that o(xy) = t. The (2, 3)-generation problem
has attracted a vide attention of group theorists. One
reason is that (2, 3)-generated groups are homomor-
phic images of the modular group PSL(2,Z), which
is the free product of two cyclic groups of order two
and three. The motivation of (2, 3)-generation of sim-
ple groups also came from the calculation of the genus
of finite simple groups [22]. The problem of finding
the genus of finite simple group can be reduced to one
of generations (see [24] for details).

Moori in [15] determined the (2, 3, p)-generations
of the smallest Fischer group F22. In [11], Ganief
and Moori established (2, 3, t)-generations of the third
Janko group J3. In a series of papers [1], [2], [3],
[4], [5], [12] and [13], the authors studied (2, 3)-
generation and generation by conjugate elements of
the sporadic simple groups Co1, Co2, Co3, He, HN ,
Suz, Ru, HS, McL, Th and Fi23. The present arti-
cle is devoted to the study of (2, 3, t)-generations for
the Tits simple group T, where t is any divisor of |T|.
For more information regarding the study of (2, 3, t)-
generations, generation by conjugate elements as well
as computational techniques used in this article, the
reader is referred to [1], [2], [3], [4], [5], [11], [15],
[16] and [22].

The Tits group T ∼= 2F4(2)
′ is a simple group

of order 17971200 = 211.33.52.13. The group T is
a subgroup of the Rudvalis sporadic simple group Ru
of index 8120. The group T also sits maximally inside
the smallest Fischer group Fi22 with index 3592512.
The maximal subgroups of the Tits simple group T

was first determined by Tchakerian [19]. Later but
independently, Wilson [20] also determined the max-
imal subgroups of the simple group T, while studying
the geometry of the simple groups of Tits and Rud-
valis.

For basic properties of the Tits group T and infor-
mation on its subgroups the reader is referred to [20],
[19]. The ATLAS of Finite Groups [9] is an impor-
tant reference and we adopt its notation for subgroups,
conjugacy classes, etc. Computations were carried out
with the aid of GAP [17].

2 Preliminary Results
Throughout this paper our notation is standard
and taken mainly from [1], [2], [3], [4], [5], [15]
and [11]. In particular, for a finite group G with
C1, C2, . . . , Ck conjugacy classes of its elements
and gk a fixed representative of Ck, we denote
∆(G) = ∆G(C1, C2, . . . , Ck) the number of dis-
tinct tuples (g1, g2, . . . , gk−1) with gi ∈ Ci such
that g1g2 . . . gk−1 = gk. It is well known that
∆G(C1, C2, . . . , Ck) is structure constant for the con-
jugacy classes C1, C2, . . . , Ck and can easily be com-
puted from the character table of G (see [14], p.45)
by the following formula ∆G(C1, C2, . . . , Ck) =
|C1||C2|...|Ck−1|

|G| ×
∑m

i=1
χi(g1)χi(g2)...χi(gk−1)χi(gk)

[χi(1G)]k−2

where χ1, χ2, . . . , χm are the irreducible
complex characters of G. Further, let
∆∗(G) = ∆∗

G(C1, C2, . . . , Ck) denote the num-
ber of distinct tuples (g1, g2, . . . , gk−1) with
gi ∈ Ci and g1g2 . . . gk−1 = gk such that G =<
g1, g2, . . . , gk−1 >. If ∆∗

G(C1, C2, . . . , Ck) > 0,
then we say that G is (C1, C2, . . . , Ck)-generated.



If H is any subgroup of G containing the fixed ele-
ment gk ∈ Ck, then ΣH(C1, C2, . . . , Ck−1, Ck)
denotes the number of distinct tuples
(g1, g2, . . . , gk−1) ∈ (C1 × C2 × . . . × Ck−1) such
that g1g2 . . . gk−1 = gk and ⟨g1, g2, . . . , gk−1⟩ ≤ H
where ΣH(C1, C2, . . . , Ck) is obtained by summing
the structure constants ∆H(c1, c2, . . . , ck) of H over
all H-conjugacy classes c1, c2, . . . , ck−1 satisfying
ci ⊆ H ∩ Ci for 1 ≤ i ≤ k − 1.

For the description of the conjugacy classes, the
character tables, permutation characters and informa-
tion on the maximal subgroups readers are referred to
ATLAS [9]. A general conjugacy class of elements
of order n in G is denoted by nX . For example 2A
represents the first conjugacy class of involutions in a
group G.

The following results in certain situations are very
effective at establishing non-generations.

Theorem 1 (Scott’s Theorem, [8] and [18]) Let
x1, x2, . . . , xm be elements generating a group G with
x1x2· · ·xn = 1G, and V be an irreducible module for
G of dimension n ≥ 2. Let CV (xi) denote the fixed
point space of ⟨xi⟩ on V , and let di is the codimension
of V/CV (xi). Then d1 + d2 + · · ·+ dm ≥ 2n .

Lemma 2 ([8]) Let G be a finite centerless
group and suppose lX , mY , nZ are G-conjugacy
classes for which ∆∗(G) = ∆∗

G(lX,mY, nZ) <
|CG(z)|, z ∈ nZ. Then ∆∗(G) = 0 and therefore
G is not (lX,mY, nZ)-generated.

3 (2, 3, t)-Generations of Tits group
The Tits group T ∼= 2F4(2)

′ has 8 conjugacy classes
of its maximal subgroups as determined by Wilson
[20] and listed in the ATLAS [9]. The group T has
22 conjugacy classes of its elements including 2 invo-
lutions namely 2A and 2B.

In this section we investigate (2, 3, t)-generations
for the Tits group T where t is a divisor of |T|. It is a
well known fact that if a group G is (2, 3, t)-generated
simple group, then 1/2 + 1/3 + 1/t < 1 (see [7] for
details). It follows that for the (2, 3, t)-generations of
the Tits simple group T, we only need to consider t ∈
{8, 10, 12, 13, 16}.

Lemma 3 The Tits simple group T is not
(2A, 3A, tX)-generated for any tX ∈
{8A, 8B, 8C, 8D, 10A}.

Proof. For the triples (2A, 3A, 8A) and (2A, 3A, 8B)
non-generation follows immediately since the
structure constants ∆T(2A, 3A, 8A) = 0 and
∆T(2A, 3A, 8B) = 0.

The group T acts on 78-dimensional irreducible
complex module V . We apply Scott’s theorem (cf.
Theorem 1) to the module V and compute that

d2A = dim(V/CV (2A)) = 32,

d3A = dim(C/CV (3A)) = 54

d8C = dim(V/CV (8C)) = 68,

d8D = dim(V/CV (8D)) = 68

d10A = dim(V/CV (10A)) = 68

Now, if the group T is (2A, 3A, tX)-generated, where
tX ∈ {8C, 8D, 10A}, then by Scott’s theorem we
must have

d2A + d3A + dtX ≥ 2× 78 = 156.

However, d2A+d3A+dtX = 154, and non-generation
of the group T by these triples follows.

Lemma 4 The Tits simple group T is
(2B, 3A, 8Z)−generated, where Z ∈ {A,B,C,D}
if and only if Z = A or B.

Proof. Our main proof will consider the following
three cases.

Case (2B, 3A, 8Z), where Z ∈ {A,B}: We
compute ∆T (2B, 3A, 8Z) = 128. Amongst the max-
imal subgroup of T, the only maximal subgroups hav-
ing non-empty intersection with any conjugacy class
in the triple (2B, 3A, tZ) is isomorphic to H ∼=
22.[28]:S3. However ΣH(2B, 3A, 8Z) = 0, which
means that H is not (2B, 3A, 8Z)-generated. Thus
∆∗

T(2B, 3A, 8Z) = ∆T (2B, 3A, 8Z) = 128 >
0, and the (2B, 3A, 8Z)-generation of T, for Z ∈
{A,B}, follows.

Case (2B, 3A, 8C): The only maximal sub-
groups of the group T that may contain (2B, 3A, 8C)-
generated subgroups, up to isomorphism, are H1

∼=
L3(3):2 (two non-conjugate copies) and H2

∼=
22.[28]:S3. Further, a fixed element z ∈ 8C
is contained in two conjugate subgroup of each
copy of H1 and in a unique conjugate subgroup
of H2. A simple computation using GAP reveals
that ∆T (2B, 3A, 8C) = 112, ΣH1(2B, 3A, 8C) =
ΣL3(3)(2B, 3A, 8C) = 20 and ΣH2(2B, 3A, 8C) =
32. By considering the maximal subgroups of H11

∼=
L3(3) and H2, we see that no maximal subgroup of
H11 and H2 is (2B,3A,8C)-generated and hence no
proper subgroup of H11 and H2 is (2B, 3A, 8C)-
generated. Thus,

∆∗
T(2B, 3A, 8C) = ∆T(2B, 3A, 8C)

−4Σ∗
H11

(2B, 3A, 8S)

−Σ∗
H2

(2B, 3A, 8C)

= 112− 4(20)− 32 = 0.



Therefore, the Tits simple group T is not
(2B, 3A, 8C)-generated.

Case (2B, 3A, 8D): In this case,
∆T(2B, 3A, 8D) = 112. We prove that Tits
simple group T is not (2B, 3A, 8D)-generated by
constructing the (2B, 3A, 8D)-generated subgroup
of the group He explicitly. We use the ”standard
generators” of the group T given by Wilson in
[21]. The group T has a 26-dimensional irreducible
representation over GF(2). Using this representation
we generate the Tits group T = ⟨a, b⟩, where a
and b are 26 × 26 matrices over GF(2) with orders
2 and 3 respectively such that ab has order 13.
Using GAP, we see that a ∈ 2A, b ∈ 3A. We
produce c = (ababab2)6, p = abababab2abab2ab2,
d = (acp)6, x = p16dp−16 such that c, d, x ∈ 2B,
p ∈ 10A and xb ∈ 8D. Let H = ⟨x, b⟩ then H < T
with H ∼= L3(3):2. Since no maximal subgroup
of H is (2B, 3A, 8D)-generated, that is no proper
subgroup of H is (2B, 3A, 8D)-generated and we
have Σ∗

H(2B, 3A, 8D) = ΣH(2B, 3A, 8D). Since
ΣH(2B, 3A, 8D) = 28 and z ∈ 8D is contained in
exactly two conjugate subgroups of each copy of H ,
we obtain that ∆∗

T(2B, 3A, 8D) = 0. Hence the Tits
simple group T is not (2B, 3A, 8D)-generated. This
completes the lemma.

Lemma 5 The Tits group T is
(2B, 3A, 10A)−generated.

Proof. Up to isomorphism, the only maximal sub-
groups having non-empty intersection with any con-
jugacy class in the triple (2B, 3A, 10A) are isomor-
phic to H ∼= 22.[28]:S3, K ∼= A6·22(two non-
conjugate copies). Since ∆T (2B, 3A, 10A) = 100
and ΣH(2B, 3A, 10A) = 0 = ΣK(2B, 3A, 10A).
we conclude that no maximal subgroup of T is
(2B, 3A, 10A)-generated. Thus

∆∗
T(2B, 3A, 10A) = ∆T(2B, 3A, 10A) = 100

and the (2B, 3A, 10A)-generation of Tits group T fol-
lows.

Lemma 6 The Tits group T is not
(2X, 3A, 12Z)−generated where X,Z ∈ {A,B}.

Proof. First we consider the case X = A.
The maximal subgroups of the group T that may
contain (2A, 3A, 12Z)-generated subgroups are iso-
morphic to H ∼= 22.[28]:S3 and K ∼= 52:4A4

(two non-conjugate copies). We compute that
∆T (2A, 3A, 12Z) = 32, ΣH(2A, 3A, 12Z) = 12
and ΣK(2A, 3A, 12Z) = 15. A fixed element of
order 12 in T is contained in a unique conjugate
subgroup of H and two conjugate subgroups of K.

Since no maximal subgroup of each H and K is
(2A, 3A, 12Z)-generated, we obtain

∆∗
T(2A, 3A, 12Z) = ∆T(2A, 3A, 12Z)

−Σ∗
H(2A, 3B, 12Z)

−4Σ∗
K(2A, 3A, 12Z)

= 32− 12− 2(15) < 0

and the non-generation of the group Tits by the triple
(2A, 3A, 12Z) follows.

Next, suppose That X = B. There are six
maximal subgroups of the group T having non-empty
intersection with each conjugacy class in the triple
(2B, 3A, 12Z), are isomorphic to H1 = L3(3):2
(two non-conjugate copies), H2

∼= L2(25), H3
∼=

22.[28]:S3 and H4 = 52:4A4 (two non-conjugate
copies). Further, a fixed element of order 12 in
Tits group is contained in a unique conjugate sub-
groups of each of H1,H2, H3 and H4. We calculate
∆T(2B, 3A, 12Z) = 84, ΣH1(2B, 3A, 12Z) = 27,
ΣH2(2B, 3A, 12Z) = 24, ΣH3(2B, 3A, 12Z) = 12
and ΣH4(2B, 3A, 12Z) = 0. Since no maximal sub-
group of each of the groups H1, H2, H3 and H4 is
(2B, 3A, 12Z)-generated. We conclude that

∆∗
T(2B, 3A, 12Z) = ∆T(2B, 3A, 12Z)

−2Σ∗
H1

(2B, 3A, 12Z)

−Σ∗
H2

(2B, 3A, 12Z)

−Σ∗
H3

(2B, 3A, 12Z)

= 84− 2(27)− 24− 12 < 0.

Therefore Tits group T is not (2B, 3A, 12Z)-
generated. This completes the proof.

Lemma 7 The Tits group T is (2X, 3A, 13Z)-
generated where X,Z ∈ {A,B} if and only if X = A

Proof. First we consider the case X = A. The struc-
ture constant ∆T(2A, 3A, 13Z) = 13. The fusion
maps of the maximal subgroup of Tits group T into
the group T shows that there is no maximal subgroup
of T has non-empty intersection with the classes in the
triple (2A, 3A, 13Z). That is no maximal subgroup of
T is (2A, 3A, 13Z)-generated. Hence,

∆∗
T(2A, 3A, 13Z) = ∆T(2A, 3A, 13Z) = 13 > 0

which implies that the Tits group T is (2A, 3A, 13Z)-
generated for Z ∈ {A,B}.

Next suppose that X = B. Up to iso-
morphism, the only maximal subgroups of T hav-
ing non-empty intersection with each conjugacy
class in the triple (2B, 3A, 13Z) are isomorphic
to L3(3):2 (two non-conjugate copies) and L2(25).



Further a fixed element of order 13 in the Tits
group T is contained in a unique conjugate of each
of L3(3):2 and in three conjugate of L2(25) sub-
groups. We compute that ∆T (2B, 3A, 13Z) = 104,
ΣL3(3):2(2B, 3A, 13Z) = ΣL3(3)(2B, 3A, 13A) =
13 and ΣL2(25)(2B, 3A, 13Z) = 26. Now by con-
sidering the maximal subgroups of L3(3) and L2(25),
we see that no maximal subgroup of the groups
L3(3) and L2(25) is (2B, 2A, 13Z)-generated. It fol-
lows that no proper subgroup of L3(3) or L2(25) is
(2B, 3A, 13Z)-generated. Thus we have

∆∗
T(2B, 3A, 13Z) = ∆T(2B, 3A, 13Z)

−2Σ∗
L3(3)

(2B, 3A, 13Z)

−3Σ∗
L2(25)

(2B, 3A, 13Z)

= 104− 2(13)− 3(26)− 12 = 0,

proving non-generation of the Tits group T by the
triple (2B, 3A, 13Z), where Z ∈ {A,B}.

Lemma 8 The Tits group T is (2X, 3A, 16Z)-
generated, where X ∈ {A,B} and Z ∈
{A,B,C,D}.

Proof. We treat two cases separately.
Case (2A,3A,16Z): The structure constant

∆T(2A, 3A, 16Z) = 16. We observe that the
group isomorphic to 22.[28]:S3 is the only maximal
subgroup of T that may contain (2A, 3A, 16Z)-
generated subgroups. However we calculate
ΣH(2A, 3A, 16Z) = 0 for H ∼= 22.[28]:S3 and hence
∆∗

T (2A, 3A, 16Z) = ∆T (2A, 3A, 16Z) = 16 > 0,
proving that (2A, 3A, 16Z) is a generating triple of
the Tits group.

Case (2B,3A,16Z): Up to isomorphism, H ∼=
22.[28]:S3 is the only one maximal subgroup of T that
may admit (2B, 3A, 16Z)-generated subgroups. A
fixed element of order 16 in the Tits group T is con-
tained in a unique conjugate subgroups of H . Since
∆T (2B, 3A, 16Z) = 112,ΣH(2B, 3A, 16Z) = 32,
we conclude that

∆∗
T(2B, 3A, 16Z) ≥ 112− 32 = 80 > 0

and the (2B, 3A, 16Z)-generation of T follows.

We now summarize our results in the next theo-
rem.

Theorem 9 Let tX be a conjugacy class of the
Tits simple group T. The group T is (2A, 3A, tX)-
generated if and only if tX ∈ {13Y, 16Z} where
Y ∈ {A,B} and Z ∈ {A,B,C,D}. Further,
the group T is (2B, 3A, tX)-generated if and only if
tX ∈ {8Y, 10A, 16Z}.

Proof. This is merely a restatement of the lemmas in
this section.
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