(2,3,t)-Generations for the Tits simple group ${}^{2}F_{4}(2)'$

MOHAMMED ALI FAYA IBRAHIM King Khalid University Department of Mathematics P.O. Box 9004, Abha SAUDI ARABIA mafibraheem@kku.edu.sa FARYAD ALI King Khalid University Department of Mathematics P.O. Box 9004, Abha SAUDI ARABIA fali@kku.edu.sa

Abstract: A group G is said to be (2, 3, t)-generated if it can be generated by two elements x and y such that o(x) = 2, o(y) = 3 and o(xy) = t. In this paper, we determine (2, 3, t)-generations of the Tits simple group $T \cong {}^{2}F_{4}(2)'$ where t is divisor of |T|. Most of the computations were carried out with the aid of computer algebra system GAP [17].

Key–Words: Tits group ${}^{2}F_{4}(2)'$, simple group, (2, 3, t)-generation, generator.

1 Introduction

A group G is called (2, 3, t)-generated if it can be generated by an involution x and an element y of order 3 such that o(xy) = t. The (2, 3)-generation problem has attracted a vide attention of group theorists. One reason is that (2, 3)-generated groups are homomorphic images of the modular group $PSL(2, \mathbb{Z})$, which is the free product of two cyclic groups of order two and three. The motivation of (2, 3)-generation of simple groups also came from the calculation of the genus of finite simple groups [22]. The problem of finding the genus of finite simple group can be reduced to one of generations (see [24] for details).

Moori in [15] determined the (2, 3, p)-generations of the smallest Fischer group F_{22} . In [11], Ganief and Moori established (2, 3, t)-generations of the third Janko group J_3 . In a series of papers [1], [2], [3], [4], [5], [12] and [13], the authors studied (2, 3)generation and generation by conjugate elements of the sporadic simple groups Co_1, Co_2, Co_3, He, HN , Suz, Ru, HS, McL, Th and Fi_{23} . The present article is devoted to the study of (2, 3, t)-generations for the Tits simple group T, where t is any divisor of |T|. For more information regarding the study of (2, 3, t)generations, generation by conjugate elements as well as computational techniques used in this article, the reader is referred to [1], [2], [3], [4], [5], [11], [15], [16] and [22].

The Tits group $T \cong {}^{2}F_{4}(2)'$ is a simple group of order 17971200 = $2^{11}.3^3.5^2.13$. The group T is a subgroup of the Rudvalis sporadic simple group Ru of index 8120. The group T also sits maximally inside the smallest Fischer group Fi_{22} with index 3592512. The maximal subgroups of the Tits simple group T was first determined by Tchakerian [19]. Later but independently, Wilson [20] also determined the maximal subgroups of the simple group T, while studying the geometry of the simple groups of Tits and Rudvalis.

For basic properties of the Tits group T and information on its subgroups the reader is referred to [20], [19]. The \mathbb{ATLAS} of Finite Groups [9] is an important reference and we adopt its notation for subgroups, conjugacy classes, etc. Computations were carried out with the aid of \mathbb{GAP} [17].

2 Preliminary Results

Throughout this paper our notation is standard and taken mainly from [1], [2], [3], [4], [5], [15] and [11]. In particular, for a finite group G with C_1, C_2, \ldots, C_k conjugacy classes of its elements and g_k a fixed representative of C_k , we denote $\Delta(G) = \Delta_G(C_1, C_2, \dots, C_k)$ the number of distinct tuples $(g_1, g_2, \ldots, g_{k-1})$ with $g_i \in C_i$ such that $g_1g_2\ldots g_{k-1} = g_k$. It is well known that $\Delta_G(C_1, C_2, \ldots, C_k)$ is structure constant for the conjugacy classes C_1, C_2, \ldots, C_k and can easily be computed from the character table of G (see [14], p.45) by the following formula $\Delta_G(C_1, C_2, \ldots, C_k) =$ $\sum_{i=1}^{m} \frac{\chi_i(g_1)\chi_i(g_2)...\chi_i(g_{k-1})}{[\chi_i(1_C)]^{k-2}}$ $|C_1||C_2|...|C_{k-1}|$ Х |G| $[\chi_i(1_G)]^{k-1}$ where irreducible $\chi_1, \chi_2, \ldots, \chi_m$ are the Further, complex characters of G. let $\Delta^*(G) = \Delta^*_G(C_1, C_2, \dots, C_k)$ denote the number of distinct tuples $(g_1, g_2, \ldots, g_{k-1})$ with $g_i \in C_i$ and $g_1 g_2 \ldots g_{k-1} = g_k$ such that G = < $g_1, g_2, \dots, g_{k-1} >$. If $\Delta^*_G(C_1, C_2, \dots, C_k) > 0$, then we say that G is (C_1, C_2, \ldots, C_k) -generated.

If H is any subgroup of G containing the fixed element $g_k \in C_k$, then $\Sigma_H(C_1, C_2, \ldots, C_{k-1}, C_k)$ denotes the number of distinct tuples $(g_1, g_2, \ldots, g_{k-1}) \in (C_1 \times C_2 \times \ldots \times C_{k-1})$ such that $g_1g_2 \ldots g_{k-1} = g_k$ and $\langle g_1, g_2, \ldots, g_{k-1} \rangle \leq H$ where $\Sigma_H(C_1, C_2, \ldots, C_k)$ is obtained by summing the structure constants $\Delta_H(c_1, c_2, \ldots, c_k)$ of H over all H-conjugacy classes $c_1, c_2, \ldots, c_{k-1}$ satisfying $c_i \subseteq H \cap C_i$ for $1 \leq i \leq k-1$.

For the description of the conjugacy classes, the character tables, permutation characters and information on the maximal subgroups readers are referred to ATLAS [9]. A general conjugacy class of elements of order n in G is denoted by nX. For example 2A represents the first conjugacy class of involutions in a group G.

The following results in certain situations are very effective at establishing non-generations.

Theorem 1 (Scott's Theorem, [8] and [18]) Let x_1, x_2, \ldots, x_m be elements generating a group G with $x_1x_2\cdots x_n = 1_G$, and V be an irreducible module for G of dimension $n \ge 2$. Let $C_V(x_i)$ denote the fixed point space of $\langle x_i \rangle$ on V, and let d_i is the codimension of $V/C_V(x_i)$. Then $d_1 + d_2 + \cdots + d_m \ge 2n$.

Lemma 2 ([8]) Let G be a finite centerless group and suppose lX, mY, nZ are G-conjugacy classes for which $\Delta^*(G) = \Delta^*_G(lX, mY, nZ) < |C_G(z)|, z \in nZ$. Then $\Delta^*(G) = 0$ and therefore G is not (lX, mY, nZ)-generated.

3 (2,3,t)-Generations of Tits group

The Tits group $T \cong {}^{2}F_{4}(2)'$ has 8 conjugacy classes of its maximal subgroups as determined by Wilson [20] and listed in the ATLAS [9]. The group T has 22 conjugacy classes of its elements including 2 involutions namely 2A and 2B.

In this section we investigate (2, 3, t)-generations for the Tits group T where t is a divisor of |T|. It is a well known fact that if a group G is (2, 3, t)-generated simple group, then 1/2 + 1/3 + 1/t < 1 (see [7] for details). It follows that for the (2, 3, t)-generations of the Tits simple group T, we only need to consider $t \in$ $\{8, 10, 12, 13, 16\}$.

Lemma 3 The Tits simple group T is not (2A, 3A, tX)-generated for any $tX \in \{8A, 8B, 8C, 8D, 10A\}$.

Proof. For the triples (2A, 3A, 8A) and (2A, 3A, 8B)non-generation follows immediately since the structure constants $\Delta_T(2A, 3A, 8A) = 0$ and $\Delta_T(2A, 3A, 8B) = 0$. The group T acts on 78-dimensional irreducible complex module V. We apply Scott's theorem (cf. Theorem 1) to the module V and compute that

 $d_{2A} = \dim(V/C_V(2A)) = 32,$ $d_{3A} = \dim(C/C_V(3A)) = 54$ $d_{8C} = \dim(V/C_V(8C)) = 68,$ $d_{8D} = \dim(V/C_V(8D)) = 68$ $d_{10A} = \dim(V/C_V(10A)) = 68$

Now, if the group T is (2A, 3A, tX)-generated, where $tX \in \{8C, 8D, 10A\}$, then by Scott's theorem we must have

$$d_{2A} + d_{3A} + d_{tX} \ge 2 \times 78 = 156.$$

However, $d_{2A} + d_{3A} + d_{tX} = 154$, and non-generation of the group T by these triples follows.

Lemma 4 The Tits simple group T is (2B, 3A, 8Z)-generated, where $Z \in \{A, B, C, D\}$ if and only if Z = A or B.

Proof. Our main proof will consider the following three cases.

Case (2B, 3A, 8Z), where $Z \in \{A, B\}$: We compute $\Delta_T(2B, 3A, 8Z) = 128$. Amongst the maximal subgroup of T, the only maximal subgroups having non-empty intersection with any conjugacy class in the triple (2B, 3A, tZ) is isomorphic to $H \cong 2^2 \cdot [2^8]:S_3$. However $\Sigma_H(2B, 3A, 8Z) = 0$, which means that H is not (2B, 3A, 8Z)-generated. Thus $\Delta_T^*(2B, 3A, 8Z) = \Delta_T(2B, 3A, 8Z) = 128 > 0$, and the (2B, 3A, 8Z)-generation of T, for $Z \in \{A, B\}$, follows.

Case (2B, 3A, 8C): The only maximal subgroups of the group T that may contain (2B, 3A, 8C)generated subgroups, up to isomorphism, are $H_1 \cong$ $L_3(3)$:2 (two non-conjugate copies) and $H_2 \cong$ $2^2 \cdot [2^8] : S_3$. Further, a fixed element $z \in 8C$ is contained in two conjugate subgroup of each copy of H_1 and in a unique conjugate subgroup of H_2 . A simple computation using GAP reveals that $\Delta_T(2B, 3A, 8C) = 112, \Sigma_{H_1}(2B, 3A, 8C) =$ $\Sigma_{L_3(3)}(2B, 3A, 8C) = 20$ and $\Sigma_{H_2}(2B, 3A, 8C) =$ 32. By considering the maximal subgroups of $H_{11} \cong$ $L_3(3)$ and H_2 , we see that no maximal subgroup of H_{11} and H_2 is (2B,3A,8C)-generated and hence no proper subgroup of H_{11} and H_2 is (2B, 3A, 8C)generated. Thus,

$$\begin{split} \Delta_{\mathrm{T}}^*(2B,3A,8C) &= & \Delta_{\mathrm{T}}(2B,3A,8C) \\ && -4\Sigma_{H_{11}}^*(2B,3A,8S) \\ && -\Sigma_{H_2}^*(2B,3A,8C) \\ &= & 112 - 4(20) - 32 = 0. \end{split}$$

Therefore, the Tits simple group T is not (2B, 3A, 8C)-generated.

(2B, 3A, 8D): In Case this case, We prove that Tits $\Delta_{\rm T}(2B, 3A, 8D) = 112.$ simple group T is not (2B, 3A, 8D)-generated by constructing the (2B, 3A, 8D)-generated subgroup of the group He explicitly. We use the "standard generators" of the group T given by Wilson in [21]. The group T has a 26-dimensional irreducible representation over $\mathbb{GF}(2)$. Using this representation we generate the Tits group T = $\langle a, b \rangle$, where a and b are 26×26 matrices over $\mathbb{GF}(2)$ with orders 2 and 3 respectively such that ab has order 13. Using GAP, we see that $a \in 2A, b \in 3A$. We produce $c = (ababab^2)^6$, $p = abababab^2 abab^2 aba^2$, $d = (acp)^6$, $x = p^{16} dp^{-16}$ such that $c, d, x \in 2B$, $p \in 10A$ and $xb \in 8D$. Let $H = \langle x, b \rangle$ then H < Twith $H \cong L_3(3)$:2. Since no maximal subgroup of H is (2B, 3A, 8D)-generated, that is no proper subgroup of H is (2B, 3A, 8D)-generated and we have $\Sigma_{H}^{*}(2B, 3A, 8D) = \Sigma_{H}(2B, 3A, 8D)$. Since $\Sigma_H(2B, 3A, 8D) = 28$ and $z \in 8D$ is contained in exactly two conjugate subgroups of each copy of H, we obtain that $\Delta_{T}^{*}(2B, 3A, 8D) = 0$. Hence the Tits simple group T is not (2B, 3A, 8D)-generated. This completes the lemma.

Lemma 5 The Tits group T is (2B, 3A, 10A)-generated.

Proof. Up to isomorphism, the only maximal subgroups having non-empty intersection with any conjugacy class in the triple (2B, 3A, 10A) are isomorphic to $H \cong 2^2 \cdot [2^8]:S_3$, $K \cong A_6 \cdot 2^2$ (two nonconjugate copies). Since $\Delta_T(2B, 3A, 10A) = 100$ and $\Sigma_H(2B, 3A, 10A) = 0 = \Sigma_K(2B, 3A, 10A)$. we conclude that no maximal subgroup of T is (2B, 3A, 10A)-generated. Thus

$$\Delta_{\rm T}^*(2B, 3A, 10A) = \Delta_{\rm T}(2B, 3A, 10A) = 100$$

and the (2B, 3A, 10A)-generation of Tits group T follows.

Lemma 6 The Tits group T is not (2X, 3A, 12Z)-generated where $X, Z \in \{A, B\}$.

Proof. First we consider the case X = A. The maximal subgroups of the group T that may contain (2A, 3A, 12Z)-generated subgroups are isomorphic to $H \cong 2^2 \cdot [2^8] \cdot S_3$ and $K \cong 5^2 \cdot 4A_4$ (two non-conjugate copies). We compute that $\Delta_T(2A, 3A, 12Z) = 32$, $\Sigma_H(2A, 3A, 12Z) = 12$ and $\Sigma_K(2A, 3A, 12Z) = 15$. A fixed element of order 12 in T is contained in a unique conjugate subgroup of H and two conjugate subgroups of K. Since no maximal subgroup of each H and K is (2A, 3A, 12Z)-generated, we obtain

$$\begin{split} \Delta_{\mathrm{T}}^{*}(2A,3A,12Z) &= & \Delta_{\mathrm{T}}(2A,3A,12Z) \\ & & -\Sigma_{H}^{*}(2A,3B,12Z) \\ & & -4\Sigma_{K}^{*}(2A,3A,12Z) \\ & = & 32-12-2(15)<0 \end{split}$$

and the non-generation of the group Tits by the triple (2A, 3A, 12Z) follows.

Next, suppose That X = B. There are six maximal subgroups of the group T having non-empty intersection with each conjugacy class in the triple (2B, 3A, 12Z), are isomorphic to $H_1 = L_3(3)$:2 (two non-conjugate copies), $H_2 \cong L_2(25)$, $H_3 \cong$ $2^2 \cdot [2^8]$: S_3 and $H_4 = 5^2$: $4A_4$ (two non-conjugate copies). Further, a fixed element of order 12 in Tits group is contained in a unique conjugate subgroups of each of H_1, H_2, H_3 and H_4 . We calculate $\Delta_T(2B, 3A, 12Z) = 84$, $\Sigma_{H_1}(2B, 3A, 12Z) = 27$, $\Sigma_{H_2}(2B, 3A, 12Z) = 24$, $\Sigma_{H_3}(2B, 3A, 12Z) = 12$ and $\Sigma_{H_4}(2B, 3A, 12Z) = 0$. Since no maximal subgroup of each of the groups H_1, H_2, H_3 and H_4 is (2B, 3A, 12Z)-generated. We conclude that

$$\begin{array}{lll} \Delta_{\mathrm{T}}^{*}(2B,3A,12Z) &=& \Delta_{\mathrm{T}}(2B,3A,12Z) \\ && -2\Sigma_{H_{1}}^{*}(2B,3A,12Z) \\ && -\Sigma_{H_{2}}^{*}(2B,3A,12Z) \\ && -\Sigma_{H_{3}}^{*}(2B,3A,12Z) \\ && =& 84-2(27)-24-12<0. \end{array}$$

Therefore Tits group T is not (2B, 3A, 12Z)-generated. This completes the proof.

Lemma 7 The Tits group T is (2X, 3A, 13Z)generated where $X, Z \in \{A, B\}$ if and only if X = A

Proof. First we consider the case X = A. The structure constant $\Delta_T(2A, 3A, 13Z) = 13$. The fusion maps of the maximal subgroup of Tits group T into the group T shows that there is no maximal subgroup of T has non-empty intersection with the classes in the triple (2A, 3A, 13Z). That is no maximal subgroup of T is (2A, 3A, 13Z)-generated. Hence,

$$\Delta_{\rm T}^*(2A, 3A, 13Z) = \Delta_{\rm T}(2A, 3A, 13Z) = 13 > 0$$

which implies that the Tits group T is (2A, 3A, 13Z)generated for $Z \in \{A, B\}$.

Next suppose that X = B. Up to isomorphism, the only maximal subgroups of T having non-empty intersection with each conjugacy class in the triple (2B, 3A, 13Z) are isomorphic to $L_3(3)$:2 (two non-conjugate copies) and $L_2(25)$.

Further a fixed element of order 13 in the Tits group T is contained in a unique conjugate of each of $L_3(3)$:2 and in three conjugate of $L_2(25)$ subgroups. We compute that $\Delta_T(2B, 3A, 13Z) = 104$, $\Sigma_{L_3(3):2}(2B, 3A, 13Z) = \Sigma_{L_3(3)}(2B, 3A, 13A) =$ 13 and $\Sigma_{L_2(25)}(2B, 3A, 13Z) = 26$. Now by considering the maximal subgroups of $L_3(3)$ and $L_2(25)$, we see that no maximal subgroup of the groups $L_3(3)$ and $L_2(25)$ is (2B, 2A, 13Z)-generated. It follows that no proper subgroup of $L_3(3)$ or $L_2(25)$ is (2B, 3A, 13Z)-generated. Thus we have

proving non-generation of the Tits group T by the triple (2B, 3A, 13Z), where $Z \in \{A, B\}$.

Lemma 8 The Tits group T is (2X, 3A, 16Z)generated, where $X \in \{A, B\}$ and $Z \in \{A, B, C, D\}$.

Proof. We treat two cases separately.

Case (2A,3A,16Z): The structure constant $\Delta_T(2A,3A,16Z) = 16$. We observe that the group isomorphic to $2^2 \cdot [2^8] : S_3$ is the only maximal subgroup of T that may contain (2A, 3A, 16Z)-generated subgroups. However we calculate $\Sigma_H(2A, 3A, 16Z) = 0$ for $H \cong 2^2 \cdot [2^8] : S_3$ and hence $\Delta_T^*(2A, 3A, 16Z) = \Delta_T(2A, 3A, 16Z) = 16 > 0$, proving that (2A, 3A, 16Z) is a generating triple of the Tits group.

Case (2B,3A,16Z): Up to isomorphism, $H \cong 2^2 \cdot [2^8] : S_3$ is the only one maximal subgroup of T that may admit (2B, 3A, 16Z)-generated subgroups. A fixed element of order 16 in the Tits group T is contained in a unique conjugate subgroups of H. Since $\Delta_T(2B, 3A, 16Z) = 112, \Sigma_H(2B, 3A, 16Z) = 32$, we conclude that

$$\Delta_{\mathrm{T}}^{*}(2B, 3A, 16Z) \ge 112 - 32 = 80 > 0$$

and the (2B, 3A, 16Z)-generation of T follows.

We now summarize our results in the next theorem.

Theorem 9 Let tX be a conjugacy class of the Tits simple group T. The group T is (2A, 3A, tX)generated if and only if $tX \in \{13Y, 16Z\}$ where $Y \in \{A, B\}$ and $Z \in \{A, B, C, D\}$. Further, the group T is (2B, 3A, tX)-generated if and only if $tX \in \{8Y, 10A, 16Z\}$. **Proof.** This is merely a restatement of the lemmas in this section. \Box

Acknowledgements: This research was supported by the King Khalid University, Saudi Arabia under research grant No. 244-44.

References:

- [1] F. Ali, (2,3,p)-Generations for the Fischer Group Fi_{23} , submitted.
- [2] F. Ali and M. A. F. Ibrahim, On the ranks of Conway groups Co₂ and Co₃, J. Algebra Appl., 4, 2005, pp. 557–565.
- [3] F. Ali and M. A. F. Ibrahim, On the ranks of Conway group Co₁, Proc. Japan Acad., 81A, 2005, pp. 95–98.
- [4] F. Ali and M. A. F. Ibrahim, On the ranks of HS and McL, Utilitas Mathematica, to appear in Volume 70, July 2006.
- [5] F. Ali and M. A. F. Ibrahim, (2, 3, t)-Generations for the Held's sporadic group He, submitted.
- [6] M. D. E. Conder, Hurwitz groups: A brief survey, *Bull. Amer. Math. Soc.*, 23, 1990, pp. 359–370.
- [7] M. D. E. Conder, Some results on quotients of triangle groups, *Bull. Australian Math. Soc.*, 30, 1984, pp. 73–90.
- [8] M. D. E. Conder, R. A. Wilson and A. J. Woldar, The symmetric genus of sporadic groups, *Proc. Amer. Math. Soc.*, **116**, 1992, pp. 653–663.
- [9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press (Clarendon), Oxford, 1985.
- [10] L. Di Martino and C. Tamburini, 2-Generation of finite simple groups and some related topics, *Generators ans Relations in Groups and Geometry*, A. Barlotti et al., Kluwer Acad. Publ., New York (1991), pp. 195–233.
- [11] S. Ganief and J. Moori, (2, 3, t)-Generations for the Janko group J₃, *Comm. Algebra*, 23, 1995, pp. 4427–4437.
- [12] M. A. F. Ibrahim, On the ranks of certain sporadic simple groups by Suzuki, Thompson and Rudvalis, *Algebras, Groups and Geometries*, to appear.
- [13] M. A. F. Ibrahim, On the ranks of Harada-Norton sporadic group HN, *Int. Math. J.*, to appear.
- [14] I. M. Isaacs, *Character Theory of Finite Groups*, Dover, New-York, 1976.
- [15] J. Moori, (2, 3, p)-Generations for the Fischer group F₂₂, Comm. Algebra, 22, 1994, pp. 4597– 4610.

- [16] J. Moori, On the ranks of the Fischer group F_{22} , Math. Japonica, **43**, 1996, pp. 365–367.
- [17] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.3, Aachen, St Andrews, 2002, (http://www.gap-system.org).
- [18] L. L. Scott, Matrices and Cohomology, Ann. of Math., 105, 1977, pp. 473–492.
- [19] K. B. Tchakerian, The maximal subgroups of the Tits simple group, *C. R. Acad. Bulgare Sci.*, **34**, 1981, pp. 16–37.
- [20] R. A. Wilson, The geometry and maximal subgroups of the simple groups of A. Rudvalis and J. Tits, *Proc. London Math. Soc.*, 48, 1984, pp. 553–563.
- [21] R. A. Wilson et al., A world-wideweb Atlas of Group Representations, (http://web.mat.bham.ac.uk/atlas).
- [22] A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups, *Illinois Math. J.*, **33**, 1989, pp. 416–437.
- [23] A. J. Woldar, Sporadic simple groups which are Hurwitz, J. Algebra, 144, 1991, pp. 443–450.
- [24] A. J. Woldar, Representing M_{11} , M_{12} , M_{22} and M_{23} on surfaces of least genus, *Comm. Algebra*, **18**, 1990, pp. 15–86.