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Abstract

Let G be a finite group generated by conjugate involutions, and let i(G) = min{|X|},
where X runs over the sets of conjugate involutions generating G. Of course i(G) ≤ 2
implies G is cyclic or dihedral. However, the problem of determining those G for which
i(G) > 2 is much more intricate. In this note, we prove that i(G) ≤ 4, where G is one
of the Conway’s sporadic simple group. The computations were carried out using the
computer algebra system GAP [15].
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1 Introduction

It is well known that sporadic simple groups are generated by three conjugate involutions
(see [7]). Recently there has been considerable interest in generation of simple groups by
their conjugate involutions. Moori [14] proved that the Fischer group Fi22 can be generated
by three conjugate involutions. The work of Liebeck and Shalev [13] show that all but
finitely many classical groups can be generated by three involutions. Moori and Ganief
in [12] determined the generating pairs for the Conway groups Co2 and Co3. Darafsheh,
Ashrafi and Moghani in [8, 9, 10] computed the (p, q, r) and nX-complementary generations
for the largest Conway group Co1, while recently Bates and Rowley in [5] determined the
suborbits of Conway’s largest simple group in its conjugation action on each of its three
conjugacy classes of involutions. More recently, the authors in [2, 3] computed the ranks
for the Conway groups. In this note, we compute the minimal generating involution sets
for the Conway’s sporadic simple groups.

Let G be a finite group generated by conjugate involutions, and let i(G) = min{|X|},
where X runs over the sets of conjugate involutions generating G. Since i(G) ≤ 2 implies
G is cyclic or dihedral we are interested in determining those G for which i(G) > 2. In this
note, we show that i(G) ∈ {3, 4}, where G is one of the Conway’s sporadic simple group.
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Throughout this paper we use the same terminology and notation as in [1, 2, 3, 4]
and [12]. In particular, if G is a finite group, C1, C2, · · · , Ck are the conjugacy classes of its
elements and gk is a fixed representative of Ck, then ∆G(C1, C2, · · · , Ck) denotes the number
of distinct tuples (g1, g2, · · · , gk−1) ∈ (C1 × C2 × · · · × Ck−1) such that g1g2 · · · gk−1 = gk.
It is well known that ∆G(C1, C2, · · · , Ck) is the structure constant of G for the conjugacy
classes C1, C2, · · · , Ck and can be computed from the character table of G (see [?], p.45 )
by the following formula

∆G(C1, C2, · · · , Ck) =
|C1||C2| · · · |Ck−1|

|G| ×
m∑

i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)
[χi(1G)]k−2

where χ1, χ2, · · · , χm are the irreducible complex characters of G. Also, ∆∗
G(C1, C2,

· · · , Ck) denotes the number of distinct tuples (g1, g2, · · · , gk−1) ∈ (C1 × C2 × · · · × Ck−1)
such that g1g2 · · · gk−1 = gk and G = 〈g1, g2, · · · , gk−1〉. If ∆∗

G(C1, C2, · · · , Ck) > 0,
then we say that G is (C1, C2, · · · , Ck)-generated. If H any subgroup of G containing
the fixed element gk ∈ Ck, then ΣH(C1, C2, · · · , Ck−1, Ck) denotes the number of dis-
tinct tuples (g1, g2, · · · , gk−1) ∈ (C1 × C2 × · · · × Ck−1) such that g1g2 · · · gk−1 = gk and
〈g1, g2, · · · , gk−1〉 ≤ H where ΣH(C1, C2, · · · , Ck) is obtained by summing the structure
constants ∆H(c1, c2, · · · , ck) of H over all H-conjugacy classes c1, c2, · · · , ck−1 satisfying
ci ⊆ H ∩ Ci for 1 ≤ i ≤ k − 1.

The number of conjugates of a given subgroup H of G containing a fixed element c is
given by h = χNG(H)(c), where χNG(H) is the permutation character of G with action on
the conjugates of H.

2 The largest Conway group Co1

The Conway group Co1 is a sporadic simple group of order

4, 157, 776, 806, 543, 360, 000 = 221.39.54.11.13.23.

The subgroup structure of Co1 is discussed in Wilson [17]. The group Co1 has exactly 22
conjugacy classes of maximal subgroups as listed in Wilson [17]. Co1 has 101 conjugacy
classes of its elements. It has precisely three classes of involutions, namely 2A, 2B and
2C as represented in the ATLAS [6]. For basic properties of Co1 and information on its
maximal subgroups the reader is referred to [6], [8] and [17].

Lemma 1 The group Co1 can be generated by three conjugate involutions a, b, c ∈ 2X for
all X ∈ {A,B, C} such that abc ∈ 11A.

Proof: The case that X = A has been proved in [3] as Lemma 2.1.
Next we consider the case X = B. We compute usingGAP that ∆Co1(2B, 2B, 2B, 11A) =

2073535860. In Co1 we have only two maximal subgroups, up to isomorphism, with or-
ders divisible by 13 and having non-empty intersection with classes 2B and 11A, namely,
H1

∼= 3.Suz.2 and H2
∼= 211:M24. We also have ΣH1(2B, 2B, 2B, 11A) = 21853689. A fixed

element of order 11 in Co1 lies in a unique conjugate copy of H1. Hence H1 contributes
1× 21853689 = 21853689 to the number ∆Co1(2B, 2B, 2B, 11A).
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Similarly, we obtain that ΣH2(2B, 2B, 2B, 11A) = 2398704 and a fixed element of order
11 in Co1 lies in precisely three conjugate subgroups of H2. This mean that H2 contributes
3× 2398704 = 7196112 to the number ∆Co1(2B, 2B, 2B, 11A). Since

∆∗
Co1

(2B, 2B, 2B, 11A) ≥ 2073535860− 21853689− 7196112 > 0,

the group Co1 is (2B, 2B, 2B, 11A)-generated.

Finally, consider the case X = C. The only maximal subgroups of Co1 that may con-
tain (2C, 2C, 2C, 11A)-generated subgroups are isomorphic to Co2, 3.Suz.2, 211:M24, Co3,
U6(2).3.2 and 36:2M12. We calculate that ΣCo2(2C, 2C, 2C, 11A) = 555389032,
Σ3.Suz.2(2C, 2C, 2C, 11A) = 0, Σ211:M24

(2C, 2C, 2C, 11A) = 21845824, ΣCo3(2C, 2C, 2C, 11A) =
35424928, ΣU6(2).3.2(2C, 2C, 2C, 11A) = 39785526, Σ36:2M12

(2C, 2C, 2C, 11A) = 176418 and
we obtain that

∆∗
Co1

(2C, 2C, 2C, 11A) ≥ ∆Co1(2C, 2C, 2C, 11A)− 6ΣCo2(2C, 2C, 2C, 11A)
−3Σ211:M24

(2C, 2C, 2C, 11A)− 6ΣCo3(2C, 2C, 2C, 11A)
−2ΣU6(2).3.2(2C, 2C, 2C, 11A)− 2Σ36:2M12

(2C, 2C, 2C, 11A) > 0

Hence the group Co1 is (2C, 2C, 2C, 11A)-generated.

Lemma 2 Let Co1 be the Conway’s largest sporadic simple group then i(Co1) = 3.

Proof: In the above lemma we proved that Co1 can be generated by three conjugate
involutions from each conjugacy class of involution 2A, 2B and 2C. Therefore i(G) ≤ 3.
Since i(G) = 2 is not possible, the result follows.

3 The Conway group Co2

The Conway group Co2 is a sporadic simple group of order 218.36.53.7.11.23 with 11 con-
jugacy classes of maximal subgroups. It has 60 conjugacy classes of its elements including
three conjugacy classes of involutions, namely 2A, 2B and 2C. The group Co2 acts prim-
itively on a set Ω of 2300 points. The point stabilizer of this action is isomorphic to
U6(2):2 and the orbits have length 1, 891 and 1408. The permutation character of Co2

on the cosets of U6(2):2 is given by χU6(2):2 = 1a + 275a + 2024a. For basic properties of
Co2 and computational techniques, the reader is encouraged to consult [2], [?], [12] and [17].

Lemma 3 ([2]) The group Co2 can not be generated by three conjugate involutions from
its 2A conjugacy class.

Lemma 4 Let Co2 be the Conway’s second largest sporadic simple group. Then i(Co2) = 4
for the conjugacy class 2A of Co2.
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Proof: We compute that the structure constant ∆Co2(2A, 2A, 2A, 2A, 23A) = 17836822.
The only maximal subgroup of Co2 which has order divisible by 23 is isomorphic to M23.
However, 2A ∩M23 = ∅. Thus we have

∆∗
Co2

(2A, 2A, 2A, 2A, 23A) = ∆Co2(2A, 2A, 2A, 2A, 23A) > 0.

Thus Co2 can be generated by four conjugate involutions from the conjugacy class 2A.
Next we compute the minimal generating sets for the classes 2B and 2C of Co2.

Lemma 5 The Conway group Co2 is (2X, 2X, 2X, 23A)-generated for X ∈ {B,C}.

Proof: We calculate that ∆Co2(2B, 2B, 2B, 23A) = 12696 and ∆Co2(2C, 2C, 2C, 23A) =
549387660. The only maximal subgroups of Co2 which can have (2X, 2X, 2X, 23A)-generated
proper subgroups is isomorphic to M23. However, the 2B and 2C classes of Co2 does not
meet M23. That is, 2B ∩M23 = ∅ = 2C ∩M23. Thus, no maximal subgroup and hence no
proper subgroup of Co2 is (2X, 2X, 2X, 23A)-generated where X ∈ {B, C}. We obtain that

∆∗
Co2

(2X, 2X, 2X, 23A) = ∆Co2(2X, 2X, 2X, 23A) > 0.

Therefore, Co2 is (2X, 2X, 2X, 23A)-generated for X ∈ {B,C}.

Lemma 6 Let Co2 be the Conway’s second sporadic simple group then i(Co2) ∈ {3, 4}.

Proof: The result is now immediate from the above three lemmas.

4 The smallest Conway group Co3

The smallest Conway group Co3 is a sporadic simple group of order 210.37.53.7.11.23 with
14 conjugacy classes of maximal subgroups. The group Co3 has 42 conjugacy classes of
its elements. It has two conjugacy classes of involutions, namely 2A and 2B. For basic
properties of Co3 we refer readers to [6] and [11].

Lemma 7 Let Co3 be the smallest Conway group then i(Co3) = 3.

Proof: There are two conjugacy classes of involutions in Co3.
The only maximal subgroup of the group Co3 that may contain (2A, 2A, 2A, 23A)-

generated proper subgroup of Co3, up to isomorphism, is M23. Further, a fixed element
z ∈ 23A is contained in a unique conjugate subgroup of M23. A simple computation reveals
that ∆Co3(2A, 2A, 2A, 23A) = 5290 and ΣM23(2A, 2A, 2A, 23A) = 3174. Since

∆∗
Co3

(2A, 2A, 2A, 23A) ≥ ∆Co3(2A, 2A, 2A, 23A)− ΣM23(2A, 2A, 2A, 23A) > 0,

we conclude that Co3 can be generated by three conjugate involutions from the 2A class
of Co3. Also, we can apply similar techniques to show that Co3 can be generated by three
conjugate involutions from the class 2B of Co3. This completes the proof.
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