On the generation of the Conway groups by conjugate involutions^{*}

Faryad Ali[†] and Mohammed Ali Faya Ibrahim[‡] Department of Mathematics King Khalid University Abha, Saudi Arabia

Abstract

Let G be a finite group generated by conjugate involutions, and let $i(G) = min\{|X|\}$, where X runs over the sets of conjugate involutions generating G. Of course $i(G) \leq 2$ implies G is cyclic or dihedral. However, the problem of determining those G for which i(G) > 2 is much more intricate. In this note, we prove that $i(G) \leq 4$, where G is one of the Conway's sporadic simple group. The computations were carried out using the computer algebra system GAP [15].

2000 Mathematics Subject Classification: 20D08, 20F05. Key words and phrases: Conway group, Co_1 , Co_2 , Co_3 , generator, sporadic group.

1 Introduction

It is well known that sporadic simple groups are generated by three conjugate involutions (see [7]). Recently there has been considerable interest in generation of simple groups by their conjugate involutions. Moori [14] proved that the Fischer group Fi_{22} can be generated by three conjugate involutions. The work of Liebeck and Shalev [13] show that all but finitely many classical groups can be generated by three involutions. Moori and Ganief in [12] determined the generating pairs for the Conway groups Co_2 and Co_3 . Darafsheh, Ashrafi and Moghani in [8, 9, 10] computed the (p, q, r) and nX-complementary generations for the largest Conway group Co_1 , while recently Bates and Rowley in [5] determined the suborbits of Conway's largest simple group in its conjugation action on each of its three conjugacy classes of involutions. More recently, the authors in [2, 3] computed the ranks for the Conway groups. In this note, we compute the minimal generating involution sets for the Conway's sporadic simple groups.

Let G be a finite group generated by conjugate involutions, and let $i(G) = min\{|X|\}$, where X runs over the sets of conjugate involutions generating G. Since $i(G) \leq 2$ implies G is cyclic or dihedral we are interested in determining those G for which i(G) > 2. In this note, we show that $i(G) \in \{3, 4\}$, where G is one of the Conway's sporadic simple group.

^{*}Support from King Khalid University, Saudi Arabia is acknowledged (research grant No. 244-44).

[†]E-Mail: fali@kku.edu.sa

[‡]mafibraheem@kku.edu.sa

2 THE LARGEST CONWAY GROUP CO₁

Throughout this paper we use the same terminology and notation as in [1, 2, 3, 4] and [12]. In particular, if G is a finite group, C_1, C_2, \dots, C_k are the conjugacy classes of its elements and g_k is a fixed representative of C_k , then $\Delta_G(C_1, C_2, \dots, C_k)$ denotes the number of distinct tuples $(g_1, g_2, \dots, g_{k-1}) \in (C_1 \times C_2 \times \dots \times C_{k-1})$ such that $g_1g_2 \cdots g_{k-1} = g_k$. It is well known that $\Delta_G(C_1, C_2, \dots, C_k)$ is the structure constant of G for the conjugacy classes C_1, C_2, \dots, C_k and can be computed from the character table of G (see [?], p.45) by the following formula

$$\Delta_G(C_1, C_2, \cdots, C_k) = \frac{|C_1||C_2|\cdots|C_{k-1}|}{|G|} \times \sum_{i=1}^m \frac{\chi_i(g_1)\chi_i(g_2)\cdots\chi_i(g_{k-1})\overline{\chi_i(g_k)}}{[\chi_i(1_G)]^{k-2}}$$

where $\chi_1, \chi_2, \dots, \chi_m$ are the irreducible complex characters of G. Also, $\Delta_G^*(C_1, C_2, \dots, C_k)$ denotes the number of distinct tuples $(g_1, g_2, \dots, g_{k-1}) \in (C_1 \times C_2 \times \dots \times C_{k-1})$ such that $g_1g_2 \cdots g_{k-1} = g_k$ and $G = \langle g_1, g_2, \dots, g_{k-1} \rangle$. If $\Delta_G^*(C_1, C_2, \dots, C_k) > 0$, then we say that G is (C_1, C_2, \dots, C_k) -generated. If H any subgroup of G containing the fixed element $g_k \in C_k$, then $\Sigma_H(C_1, C_2, \dots, C_{k-1}, C_k)$ denotes the number of distinct tuples $(g_1, g_2, \dots, g_{k-1}) \in (C_1 \times C_2 \times \dots \times C_{k-1})$ such that $g_1g_2 \cdots g_{k-1} = g_k$ and $\langle g_1, g_2, \dots, g_{k-1} \rangle \leq H$ where $\Sigma_H(C_1, C_2, \dots, C_k)$ is obtained by summing the structure constants $\Delta_H(c_1, c_2, \dots, c_k)$ of H over all H-conjugacy classes c_1, c_2, \dots, c_{k-1} satisfying $c_i \subseteq H \cap C_i$ for $1 \leq i \leq k-1$.

The number of conjugates of a given subgroup H of G containing a fixed element c is given by $h = \chi_{N_G(H)}(c)$, where $\chi_{N_G(H)}$ is the permutation character of G with action on the conjugates of H.

2 The largest Conway group Co₁

The Conway group Co_1 is a sporadic simple group of order

$$4, 157, 776, 806, 543, 360, 000 = 2^{21} \cdot 3^9 \cdot 5^4 \cdot 11 \cdot 13 \cdot 23$$
.

The subgroup structure of Co_1 is discussed in Wilson [17]. The group Co_1 has exactly 22 conjugacy classes of maximal subgroups as listed in Wilson [17]. Co_1 has 101 conjugacy classes of its elements. It has precisely three classes of involutions, namely 2A, 2B and 2C as represented in the ATLAS [6]. For basic properties of Co_1 and information on its maximal subgroups the reader is referred to [6], [8] and [17].

Lemma 1 The group Co_1 can be generated by three conjugate involutions $a, b, c \in 2X$ for all $X \in \{A, B, C\}$ such that $abc \in 11A$.

Proof: The case that X = A has been proved in [3] as Lemma 2.1.

Next we consider the case X = B. We compute using GAP that $\Delta_{Co_1}(2B, 2B, 2B, 11A) = 2073535860$. In Co_1 we have only two maximal subgroups, up to isomorphism, with orders divisible by 13 and having non-empty intersection with classes 2B and 11A, namely, $H_1 \cong 3.Suz.2$ and $H_2 \cong 2^{11}:M_{24}$. We also have $\Sigma_{H_1}(2B, 2B, 2B, 11A) = 21853689$. A fixed element of order 11 in Co_1 lies in a unique conjugate copy of H_1 . Hence H_1 contributes $1 \times 21853689 = 21853689$ to the number $\Delta_{Co_1}(2B, 2B, 2B, 11A)$.

Similarly, we obtain that $\Sigma_{H_2}(2B, 2B, 2B, 11A) = 2398704$ and a fixed element of order 11 in Co_1 lies in precisely three conjugate subgroups of H_2 . This mean that H_2 contributes $3 \times 2398704 = 7196112$ to the number $\Delta_{Co_1}(2B, 2B, 2B, 11A)$. Since

$$\Delta_{Co_1}^*(2B, 2B, 2B, 11A) \ge 2073535860 - 21853689 - 7196112 > 0,$$

the group Co_1 is (2B, 2B, 2B, 11A)-generated.

Finally, consider the case X = C. The only maximal subgroups of Co_1 that may contain (2C, 2C, 2C, 11A)-generated subgroups are isomorphic to Co_2 , 3.Suz.2, $2^{11}:M_{24}$, Co_3 , $U_6(2).3.2$ and $3^6:2M_{12}$. We calculate that $\sum_{Co_2}(2C, 2C, 2C, 11A) = 555389032$, $\sum_{3.Suz.2}(2C, 2C, 2C, 2C, 11A) = 0$, $\sum_{2^{11}:M_{24}}(2C, 2C, 2C, 11A) = 21845824$, $\sum_{Co_3}(2C, 2C, 2C, 11A) = 35424928$, $\sum_{U_6(2).3.2}(2C, 2C, 2C, 11A) = 39785526$, $\sum_{3^6:2M_{12}}(2C, 2C, 2C, 11A) = 176418$ and we obtain that

$$\begin{aligned} \Delta_{Co_1}^*(2C, 2C, 2C, 11A) &\geq & \Delta_{Co_1}(2C, 2C, 2C, 11A) - 6\Sigma_{Co_2}(2C, 2C, 2C, 11A) \\ &\quad -3\Sigma_{2^{11}:M_{24}}(2C, 2C, 2C, 11A) - 6\Sigma_{Co_3}(2C, 2C, 2C, 11A) \\ &\quad -2\Sigma_{U_6(2):3.2}(2C, 2C, 2C, 11A) - 2\Sigma_{3^6:2M_{12}}(2C, 2C, 2C, 11A) > 0 \end{aligned}$$

Hence the group Co_1 is (2C, 2C, 2C, 11A)-generated.

Lemma 2 Let Co_1 be the Conway's largest sporadic simple group then $i(Co_1) = 3$.

Proof: In the above lemma we proved that Co_1 can be generated by three conjugate involutions from each conjugacy class of involution 2A, 2B and 2C. Therefore $i(G) \leq 3$. Since i(G) = 2 is not possible, the result follows.

3 The Conway group Co_2

The Conway group Co_2 is a sporadic simple group of order $2^{18}.3^6.5^3.7.11.23$ with 11 conjugacy classes of maximal subgroups. It has 60 conjugacy classes of its elements including three conjugacy classes of involutions, namely 2A, 2B and 2C. The group Co_2 acts primitively on a set Ω of 2300 points. The point stabilizer of this action is isomorphic to $U_6(2)$:2 and the orbits have length 1, 891 and 1408. The permutation character of Co_2 on the cosets of $U_6(2)$:2 is given by $\chi_{U_6(2):2} = \underline{1a} + \underline{275a} + \underline{2024a}$. For basic properties of Co_2 and computational techniques, the reader is encouraged to consult [2], [?], [12] and [17].

Lemma 3 ([2]) The group Co_2 can not be generated by three conjugate involutions from its 2A conjugacy class.

Lemma 4 Let Co_2 be the Conway's second largest sporadic simple group. Then $i(Co_2) = 4$ for the conjugacy class 2A of Co_2 .

Proof: We compute that the structure constant $\Delta_{Co_2}(2A, 2A, 2A, 2A, 2A, 2A) = 17836822$. The only maximal subgroup of Co_2 which has order divisible by 23 is isomorphic to M_{23} . However, $2A \cap M_{23} = \emptyset$. Thus we have

$$\Delta^*_{Co_2}(2A, 2A, 2A, 2A, 2A, 23A) = \Delta_{Co_2}(2A, 2A, 2A, 2A, 2A, 23A) > 0.$$

Thus Co_2 can be generated by four conjugate involutions from the conjugacy class 2A. Next we compute the minimal generating sets for the classes 2B and 2C of Co_2 .

Lemma 5 The Conway group Co_2 is (2X, 2X, 2X, 23A)-generated for $X \in \{B, C\}$.

Proof: We calculate that $\Delta_{Co_2}(2B, 2B, 2B, 23A) = 12696$ and $\Delta_{Co_2}(2C, 2C, 2C, 23A) = 549387660$. The only maximal subgroups of Co_2 which can have (2X, 2X, 2X, 23A)-generated proper subgroups is isomorphic to M_{23} . However, the 2B and 2C classes of Co_2 does not meet M_{23} . That is, $2B \cap M_{23} = \emptyset = 2C \cap M_{23}$. Thus, no maximal subgroup and hence no proper subgroup of Co_2 is (2X, 2X, 2X, 2X, 23A)-generated where $X \in \{B, C\}$. We obtain that

$$\Delta_{Co2}^*(2X, 2X, 2X, 23A) = \Delta_{Co2}(2X, 2X, 2X, 23A) > 0.$$

Therefore, Co_2 is (2X, 2X, 2X, 23A)-generated for $X \in \{B, C\}$.

Lemma 6 Let Co_2 be the Conway's second sporadic simple group then $i(Co_2) \in \{3, 4\}$.

Proof: The result is now immediate from the above three lemmas.

4 The smallest Conway group Co₃

The smallest *Conway* group Co_3 is a sporadic simple group of order $2^{10}.3^7.5^3.7.11.23$ with 14 conjugacy classes of maximal subgroups. The group Co_3 has 42 conjugacy classes of its elements. It has two conjugacy classes of involutions, namely 2A and 2B. For basic properties of Co_3 we refer readers to [6] and [11].

Lemma 7 Let Co_3 be the smallest Conway group then $i(Co_3) = 3$.

Proof: There are two conjugacy classes of involutions in Co_3 .

The only maximal subgroup of the group Co_3 that may contain (2A, 2A, 2A, 23A)generated proper subgroup of Co_3 , up to isomorphism, is M_{23} . Further, a fixed element $z \in 23A$ is contained in a unique conjugate subgroup of M_{23} . A simple computation reveals that $\Delta_{Co_3}(2A, 2A, 2A, 2A, 2A) = 5290$ and $\Sigma_{M_{23}}(2A, 2A, 2A, 2A, 2A) = 3174$. Since

$$\Delta^*_{Co_3}(2A, 2A, 2A, 2A, 23A) \ge \Delta_{Co_3}(2A, 2A, 2A, 23A) - \Sigma_{M_{23}}(2A, 2A, 2A, 23A) > 0,$$

we conclude that Co_3 can be generated by three conjugate involutions from the 2A class of Co_3 . Also, we can apply similar techniques to show that Co_3 can be generated by three conjugate involutions from the class 2B of Co_3 . This completes the proof.

References

- [1] F. Ali, On the ranks of O'N and Ly, *Discrete Applied Mathematics*, to appear.
- [2] F. Ali and M. A. F. Ibrahim, On the ranks of Conway groups Co₂ and Co₃, J. Algebra Appl., 4 (2005), 557–565.
- [3] F. Ali and M. A. F. Ibrahim, On the ranks of Conway group Co₁, Proc. Japan Acad. Ser. A, 81 (2005), 95–98.
- [4] F. Ali and M. A. F. Ibrahim, On the ranks of HS and McL, Utilitas Mathematica, 70 (2006), 187–195.
- [5] C. Bates and P. Rowley, Involutions in Conway's largest simple group, LMS J. Comput. Math., 7 (2004), 337–351.
- [6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. An Atlas of Finite Groups, Oxford University Press, 1985.
- [7] F. Dalla Volta, Gruppi sporadici generati da tre involuzioni, Istit. Lombardo Accad. Sci. Lett. Rend. A 119 (1985), 65–87.
- [8] M. R. Darafsheh and A. R. Ashrafi, (2, p, q)-Generation of the Conway group Co₁, Kumamoto J. Math. **13** (2000), 1–20.
- [9] M. R. Darafsheh and A. R. Ashrafi and G. A. Moghani, (p,q,r)-Generations of the Conway group Co_1 for odd p, Kumamoto J. Math. **14** (2001), 1–20.
- [10] M. R. Darafsheh and A. R. Ashrafi and G. A. Moghani, nX-Complementary generations of the Sporadic group Co₁, Acta Mathematica Vietnamica, 29(1), 2004, 57–75.
- [11] L. Finkelstein, The maximal subgroups of Conway's group C_3 and McLaughlin group, J. Algebra **25** (1973), 58–89.
- [12] S. Ganief and J. Moori, Generating pairs for the Conway groups Co₂ and Co₃, J. Group Theory 1 (1998), 237-256.
- [13] M. W. Liebeck and A. Shalev, Classical groups, probabilistic methods and (2,3)generation problem, Annals of Math, 144 (1996), 77-125.
- [14] J. Moori, On the ranks of the Fischer group F_{22} , Math. Japonica , **43**(2) (1996), 365–367.
- [15] The GAP Group, GAP Groups, Algorithms and Programming, Version 4.3, Aachen, St Andrews, 2003, (http://www.gap-system.org).
- [16] R. A. Wilson, The maximal subgroups of the Conway group Co₁, J. Algebra 85 (1983), 144–165.
- [17] R. A. Wilson, The maximal subgroups of the Conway group Co₂, J. Algebra 84 (1983), 107–114.