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Abstract

Let G be a finite group and X a conjugacy class of G.
We denote rank(G : X) to be the minimum number
of elements of X generating G. In the present paper
we investigate the ranks of the Conway group Co1.
Computations were carried with the aid of computer
algebra system GAP [17].

1 Introduction and Prelimi-

naries

Let G be a finite group and X ⊆ G. We denote the
minimum number of elements of X generating G by
rank(G : X). In the present paper we investigate
rank(G : X) where X is a conjugacy class of G and
G is a sporadic simple group.

Moori in [13], [14] and [15] proved that
rank(Fi22 : 2A) ∈ {5, 6} and rank(Fi22 : 2B) =
rank(Fi22 : 2C) = 3 where 2A, 2B and 2C are
the conjugacy classes of involutions of the smallest
Fischer group Fi22 as represented in the ATLAS
[4]. The work of Hall and Soicher [11] shows that
rank(Fi22 : 2A) = 6. Moori in [16] determined the
ranks of the Janko group J1, J2 and J3. Recently
in [1] and [2] the authors computed the ranks of the
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four sporadic simple groups HS, McL, Co2 and Co3.

In the present article, the authors continue their
study to determine the ranks of the sporadic simple
groups and the problem is resolved for the Conway’s
largest sporadic simple groups Co1. We determine
the rank for each conjugacy class of Co1. We prove
the following result:

Theorem 2.7 . Let Co1 be the Conway’s largest
sporadic simple group. Then

(a) rank(Co1 : nX) = 3 if nX ∈ {2A, 2B, 2C, 3A}.

(b) rank(Co1 : nX) = 2 if nX /∈
{1A, 2A, 2B, 2C, 3A}.

For basic properties of Co1, character tables of
Co1 and their maximal subgroups we use ATLAS
[4] and GAP [17]. For detailed information about
the computational techniques used in this talk the
reader is encouraged to consult [1], [10] and [15].

Throughout this paper our notation is standard
and taken mainly from [1], [2] and [10]. In particular,
for a finite group G with C1, C2, . . . , Ck conjugacy
classes of its elements and gk a fixed representative
of Ck, we denote ∆G(C1, C2, . . . , Ck) the number
of distinct tuples (g1, g2, . . . , gk−1) with gi ∈ Ci

such that g1g2 . . . gk−1 = gk. It is well known that
∆G(C1, C2, . . . , Ck) is structure constant for the
conjugacy classes C1, C2, . . . , Ck and can be easily
computed from the character table of G (see [12],
p.45) by the following formula ∆G(C1, C2, . . . , Ck) =
|C1||C2|...|Ck−1|

|G| ×
∑m
i=1

χi(g1)χi(g2)...χi(gk−1)χi(gk)
[χi(1G)]k−2

where χ1, χ2, . . . , χm are the irreducible complex
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characters of G. Further let ∆∗G(C1, C2, . . . , Ck) de-
note the number of distinct tuples (g1, g2, . . . , gk−1)
with gi ∈ Ci and g1g2 . . . gk−1 = gk such that
G =< g1, g2, . . . , gk−1 >. If ∆∗G(C1, C2, . . . , Ck) > 0,
then we say that G is (C1, C2, . . . , Ck)-generated.
If H is ¿a subgroup of G containing gk and B is
a conjugacy class of H such that gk ∈ B, then
ΣH(C1, C2, . . . , Ck−1, B) denotes the number of
distinct tuples (g1, g2, . . . , gk−1) such that gi ∈ Ci

and g1g2 . . . gk−1 = gk and 〈g1, g2, . . . , gk−1〉 ≤ H.

For the description of the conjugacy classes,
the character tables, permutation characters and
information on the maximal subgroups readers are
referred to ATLAS [4]. A general conjugacy class
of elements of order n in G is denoted by nX. For
example 2A represents the first conjugacy class of
involutions in a group G. We will use the maximal
subgroups and the permutation characters of Co1
on the conjugates (right cosets) of the maximal
subgroups listed in the ATLAS [4] extensively.

The following results will be crucial in determining
the ranks of a finite group G.

Lemma 1.1. (Moori [16]) Let G be a finite simple
group such that G is (lX,mY, nZ)-generated. Then
G is (lX, lX, . . . , lX︸ ︷︷ ︸

m−times

, (nZ)m)-generated.

Corollary 1.2. Let G be a finite simple group such
that G is (lX,mY, nZ)-generated, then rank(G :
lX) ≤ m.

Proof. The proof follows immediately from Lemma
1.1.

Lemma 1.3. (Conder et al. [5]) Let G be a
simple (2X,mY, nZ)-generated group. Then G is
(mY,mY, (nZ)2)-generated.

We will employ results that, in certain situations,
will effectively establish non-generation. They in-
clude Scott’s theorem (cf. [5] and [18]) and Lemma
3.3 in [21] which we state here.

Lemma 1.4. ([21]) Let G be a finite centerless
group and suppose lX, mY , nZ are G-conjugacy
classes for which ∆∗(G) = ∆∗G(lX,mY, nZ) <

|CG(nZ)|. Then ∆∗(G) = 0 and therefore G is not
(lX,mY, nZ)-generated.

2 Ranks of Co1

The Conway group Co1 is a sporadic simple group
of order

4, 157, 776, 806, 543, 360, 000 = 221.39.54.11.13.23.

The subgroup structure of Co1 is discussed in Wilson
[19]. The group Co1 has exactly 22 conjugacy classes
of maximal subgroups as listed in Wilson [19]. Co1
has 101 conjugacy classes of its elements. It has pre-
cisely three classes of involutions, namely 2A, 2B
and 2C as represented in the ATLAS [4]. Co1 acts
on a 24-dimensional vector space Ω over GF (2) and
this action produces three orbits on the set of non-
zero vectors. The point stabilizers are the groups
Co2, Co3 and 211:M24 and the permutation char-
acter of Co1 on Ω − {0}, which is given in [6], is
χ = 3.1a+2.299a+2.17250a+3.80730a+376740a+
644644a+ 2055625a+ 2417415a+ 2.5494125a, where
na denotes the first irreducible character with degree
n. For basic properties of Co1 and information on
its maximal subgroups the reader is referred to [4],
[3], [6] and [19].

Recently Darafsheh, Arshafi and Moghani in [6],
[7] and [8] established (p, q, r)-generations and nX-
complementary generations of the Conway group
Co1. We will make use of these generations to de-
termine the ranks of Co1 in some cases.

In the following we prove that the Conway group
Co1 can be generated by three involutions.

Lemma 2.1. The group Co1 can be generated by
three involutions a, b, c ∈ 2A such that abc ∈ 13A.

Proof. Using the character table of Co1 we
have ∆Co1(2A, 2A, 2A, 13A) = 9633. In Co1 we
have only two maximal subgroups, up to isomor-
phism, with orders divisible by 13, namely, H1

∼=
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3.Suz.2 and H2
∼= (A4 × G2(4)):2. We also have

ΣH1(2A, 2A, 2A, 13A) = ∆H1(2A, 2A, 2A, 13A) =
1521. A fixed element of order 13 in Co1 lies in
four conjugates of H1. Hence H1 contributes 4 ×
1521 = 6084 to the number ∆Co1(2A, 2A, 2A, 13A).
Similarly, we compute that ΣH2(2A, 2A, 2A, 13A) =
∆H2(2A, 2A, 2A, 13A) = 169 and a fixed element of
order 13 in Co1 lies in a unique conjugate of H2.
This mean that H2 contributes 1× 169 = 169 to the
number ∆Co1(2A, 2A, 2A, 13A). Since

∆∗Co1(2A, 2A, 2A, 13A) ≥ 9633− 6084− 169 > 0,

the group Co1 is (2A, 2A, 2A, 13A)-generated.

Lemma 2.2. Let Co1 be the Conway’s largest spo-
radic group Co1 then rank(Co1 : 2X) = 3 where
X ∈ {A,B,C}.

Proof. We proved in the previous lemma that Co1
is (2A, 2A, 2A, 13A)-generated and so rank(Co1 :
2A) ≤ 3 but rank(Co1 : 2A) = 2 is not possible,
because if 〈x, y〉 = Co1 for some x, y ∈ 2A then
Co1 ∼= D2n with o(xy) = n. Hence rank(Co1 :
2A) = 3. Darafsheh et. al in [6] proved that Co1
is (2Y, 3D, 11A)-generated for Y ∈ {B,C}. Now by
applying Corollary 1.2, we have rank(Co1 : 2Y ) ≤ 3
for Y ∈ {B,C}, but we know that rank(Co1 :
2Y ) > 2 as we argue in the above case, hence
rank(Co1 : 2Y ) = 3 where Y ∈ {B,C}. Therefore
rank(Co1 : 2X) = 3 where X ∈ {A,B,C}

Lemma 2.3. rank(Co1 : 3A) = 3.

Proof. First we show that rank(Co1 : 3A) > 2
by proving that Co1 is not (3A, 3A, tX)-generated
for any conjugacy class tX. If Co1 is (3A, 3A, tX)-
generated then 1

3 + 1
3 + 1

t < 1 and it follows that
t ≥ 4. Set K = {4A, 5A, 6A}. Using GAP [17] we
see that ∆Co1(3A, 3A, tX) = 0 if tX /∈ K and for
tX ∈ K we have ∆Co1(3A, 3A, tX) < |CCo1(tX)|.
We get that

∆∗Co1(3A, 3A, tX) < ∆Co1(3A, 3A, tX) < |CCo1(tX)|.

Using Lemma 1.4, we obtain that
∆∗Co1(3A, 3A, tX) = 0 for all tX with t ≥ 4

and therefore Co1 is not (3A, 3A, tX)-generated
and hence rank(Co1 : 3A) > 2. Next we show that
rank(Co1 : 3A) = 3.

Consider the triple (3A, 3A, 3A, 10E). From
the maximal subgroups of Co1, we see that the
only maximal subgroups of Co1 with order di-
visible by 10 and non-empty intersection with
the conjugacy classes 3A and 10E are isomor-
phic to H1 = 21+8

+ .O+
8 (2), H2 = 31+4.2U4(2).2,

H3 = (A5 × J2):2 and H4 = (D10 × (A5 ×A5).2).2.
We compute ∆Co1(3A, 3A, 3A, 10E) = 600 and
ΣH1(3A, 3A, 3A, 10E) = ΣH2(3A, 3A, 3A, 10E) =
ΣH3(3A, 3A, 3A, 10E) = ΣH4(3A, 3A, 3A, 10E) =
0. Thus no proper subgroup of Co1 is
(3A, 3A, 3A, 10E)-generated and we get

∆∗Co1(3A, 3A, 3A, 10E) = ∆Co1(3A, 3A, 3A, 10E) = 600.

Hence Co1 is (3A, 3A, 3A, 10E)-generated and the
result follows.

Lemma 2.4. rank(Co1 : tX) = 2 for tX ∈
{3B, 4A, 4B, 4C, 4D, 5A, 6A}.

Proof. Set T = {3B, 4B, 4D, 5A, 6A}. Consider
the triple (tX, tX, 13A) for each tX ∈ T . The
maximal subgroups of Co1 containing elements of
order 13 are, up to isomorphism, H1

∼= 3.Suz.2 and
H2
∼= (A4×G2(4)):2. We see that a fixed element of

order 13 in Co1 is contained in precisely four copies
of H1 in Co1 and in a unique conjugate copy of H2

in Co1. Now we calculate that for each tX ∈ T ,
we have ∆∗Co1(tX, tX, 13A) ≥ ∆Co1(tX, tX, 13A) −
4ΣH1(tX, tX, 13A)−ΣH2(tX, tX, 13A) > 0. We con-
clude that Co1 is (tX, tX, 13A)-generated for each
tX ∈ T . Hence rank(Co1 : tX) = 2 for each tX ∈ T .

Next for tX = 4A consider the triple
(2C, 4A, 26A). Up to isomorphism, the only
maximal subgroup of Co1 that may contain
(2C,4A,26A)-generated proper subgroup is isomor-
phic to H2

∼= (A4 × G2(4)):2. We calculate that
∆Co1(2C, 4A, 26A) = 91 and ΣH2(2C, 4A, 26A) =
39. Now a fixed element of order 26 in Co1

lies in a unique conjugate of H2 in Co1. Hence
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H2 contributes 1 × 39 = 39 to the num-
ber ∆Co1(2C, 4A, 26A). Our calculation gives
∆∗Co1(2C, 4A, 26A) ≥ 91−39 > 0 and therefore, Co1
is (2C, 4A, 26A)-generated. Now applying Lemma
1.2, we get rank(Co1 : 4A) = 2.

Finally for the rank of the conjugacy class tX =
4C we consider the triple (4C, 4C, 13A). The Co1-
class 4C fails to meet any copy of H1 or H2 in
Co1. Thus Co1 contains no proper (4C, 4C, 13A)-
subgroup. As ∆Co1(4C, 4C, 13A) = 7866268 we
conclude that Co1 is (4C, 4C, 13A)-generated and
rank(Co1 : 4C) = 2. This completes the proof.

Lemma 2.5. If n ≥ 4 and nX /∈ T =
{4A, 4B, 4C, 4D, 5A, 6A} then rank(Co1 : nX) = 2.

Proof. Direct computation using GAP and results
from Darafsheh, Arshafi and Moghani ([8]) together
with information about the power maps of Co1 we
can show that Co1 is (2A,nX,mZ)-generated for
each conjugacy class nX /∈ T of Co1 (n ≥ 4)
with appropriate mZ. Now by Lemma 1.3, Co1 is
(nX, nX, (mZ)2)-generated for all nX /∈ T (n ≥ 4).
Hence rank(Co1 : nX) = 2 for all n ≥ 4 and for each
conjugacy class nX /∈ T of Co1.

Remark 2.6. For example Co1 is (2A, 23A, 23B)-
generated. Hence Co1 is (23A, 23A,
(23B)2)-generated, so that rank(Co1 : 23A) = 2.

We now state the main result of the paper.

Theorem 2.7. Let Co1 be the Conway’s largest spo-
radic simple group. Then

(a) rank(Co1 : nX) = 3 if nX ∈ {2A, 2B, 2C, 3A}.

(b) rank(Co1 : nX) = 2 if nX /∈
{1A, 2A, 2B, 2C, 3A}.

Proof. The proof follows from Lemmas 2.1, 2.2, . . .,
and 2.5.
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