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Abstract

Let G be a finite group and X a conjugacy class of G. We de-
note rank(G : X) to be the minimum number of elements of X
generating G. In the present paper we determine the ranks for the
three sporadic simple groups Suzuki group Suz, Thompson group
Th and Rudvalis group Ru. Computations were carried with the
aid of computer algebra system GAP [18].
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1 Introduction and Preliminaries

Let G be a finite group and X ⊆ G. We denote rank of X in G by
rank(G : X), the minimum number of elements of X generating G. This
paper focuses on the determination of rank(G : X) where X is a conjugacy
class of G and G is a sporadic simple group.

Moori in [14], [15] and [16] showed that rank(Fi22 : 2A) ∈ {5, 6}
and rank(Fi22 : 2B) = rank(Fi22 : 2C) = 3 where 2A, 2B and 2C
are the conjugacy classes of involutions of the smallest Fischer group Fi22

as represented in the ATLAS [6]. Hall and Soicher in [10] proved that
rank(Fi22 : 2A) = 6. In [17], Moori determined the ranks of the Janko
groups J1, J2 and J3.

This paper is intended as a sequel to the author’s earlier papers on
the ranks of the sporadic simple groups. In a series of papers the author
determined the ranks of the sporadic simple groups HS, McL, Co1, Co2

and Co3 (cf. [1, 2, 11]). In the present paper we compute the ranks of
three sporadic simple groups, namely Suzuki group Suz, Thompson group
Th and Rudvalis group Ru.

For basic properties of these groups, their character tables and their
maximal subgroups we use ATLAS [6] and GAP [18]. For detailed infor-
mation about the computational techniques used in this paper the reader
is encouraged to consult [1, 2, 3, 4, 8, 16, 17].

In this paper we use the same notation as in [1], [2] and [14]. In par-
ticular, for a finite group G with C1, C2, . . . , Ck conjugacy classes of its
elements and gk a fixed representative of Ck, we denote ∆G(C1, C2, . . . , Ck)
the number of distinct tuples (g1, g2, . . . , gk−1) with gi ∈ Ci such that
g1g2 . . . gk−1 = gk. It is well known that ∆G(C1, C2, . . . , Ck) is structure
constant for the conjugacy classes C1, C2, . . . , Ck and can be easily com-
puted from the character table of G (see [12], p.45) by the following formula

∆G(C1, C2, . . . , Ck) =
|C1||C2| . . . |Ck−1|

|G|
×

m∑
i=1

χi(g1)χi(g2) . . . χi(gk−1)χi(gk)

[χi(1G)]k−2

where χ1, χ2, . . . , χm are the irreducible complex characters of G. Further
let ∆∗G(C1, C2, . . . , Ck) denote the number of distinct tuples (g1, g2, . . . , gk−1)
with gi ∈ Ci and g1g2 . . . gk−1 = gk such that G =< g1, g2, . . . , gk−1 >. If
∆∗G(C1, C2, . . . , Ck) > 0, then we say that G is (C1, C2, . . . , Ck)-generated.
If H is ¿a subgroup of G containing gk and B is a conjugacy class of H
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such that gk ∈ B, then ΣH(C1, C2, . . . , Ck−1, B) denotes the number of dis-
tinct tuples (g1, g2, . . . , gk−1) such that gi ∈ Ci and g1g2 . . . gk−1 = gk and
〈g1, g2, . . . , gk−1〉 ≤ H.

For the description of the conjugacy classes, the character tables, per-
mutation characters and information on the maximal subgroups reader is
referred to ATLAS [6]. A general conjugacy class of elements of order n in
G is denoted by nX. For example 2A represents the first conjugacy class
of involutions in a group G and 5AB represents the first two conjugacy
classes of elements of order 5 in G respectively. We will use the maximal
subgroups and the permutation characters on the conjugates (right cosets)
of the maximal subgroups listed in the ATLAS extensively.

The following results will be crucial in determining the ranks of a finite
group G.

Lemma 1 (Moori [17]) Let G be a finite simple group such that G is
(lX,mY, nZ)-generated. Then G is (lX, lX, . . . , lX︸ ︷︷ ︸

m−times

, (nZ)m)-generated.

Corollary 2 Let G be a finite simple group such that G is (lX,mY, nZ)-
generated, then rank(G : lX) ≤ m.

Proof. The proof follows immediately from Lemma 1.

Lemma 3 (Conder et al. [7]) Let G be a simple (2X,mY, nZ)-generated
group. Then G is (mY,mY, (nZ)2)-generated.

We will employ results that, in certain situations, will effectively estab-
lish non-generation. They include Scott’s theorem (cf. [7] and [19]) and
Lemma 3.3 in [20] which we state here.

Lemma 4 ([20]) Let G be a finite centerless group and suppose lX,
mY , nZ are G-conjugacy classes for which ∆∗(G) = ∆∗G(lX,mY, nZ) <
|CG(nZ)|. Then ∆∗(G) = 0 and therefore G is not (lX,mY, nZ)-generated.
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2 Ranks of Suz

The Suzuki group Suz is a sporadic simple group of order

448345497600 = 213.37.52.7.11.13.

It is well known that Suz has exactly 43 conjugacy classes of its elements
and 17 conjugacy classes of its maximal subgroups as listed in the ATLAS
[6]. It has precisely two classes of involutions, namely 2A and 2B as rep-
resented in the ATLAS. In the following lemma we prove that the Suzuki
group Suz can be generated by three conjugate involutions.

Lemma 5 Let X∈{A,B} then rank(Suz : 2X) = 3.

Proof. Direct computation in GAP using the character table of Suz
shows that the structure constant ∆Suz(2A, 2A, 2A, 14A) = 5096. The
only maximal subgroups of Suz with elements of order 14 and having non-
trivial intersection with classes 2A and 14A are, up to isomorphism, J2:2
and (A4 × PSL(3, 4)):2. An easy computation reveals that

ΣJ2:2(2A, 2A, 2A, 14A) = Σ(A4×PSL(3,4)):2(2A, 2A, 2A, 14A) = 0.

It follows that ∆∗Suz(2A, 2A, 2A, 14A) = ∆Suz(2A, 2A, 2A, 14A) = 5096.
Thus Suz has no proper (2A, 2A, 2A, 14A)-generated subgroup and so is
itself (2A, 2A, 2A, 14A)-generated. Now for the conjugacy class 2B, we
can similarly show that Suz is (2B, 2B, 2B, 14A)-generated.

Hence rank(Suz : 2X) ≤ 3 where X∈{A,B} but rank(Suz : 2X) = 2
is not possible, because if 〈x, y〉 = Suz for some x, y ∈ 2X then Suz ∼= D2n

with o(xy) = n. Therefore rank(Suz : 2X) = 3 where X∈{A,B}.

Lemma 6 rank(Suz : 3A) = 3.

Proof. First we show that rank(Suz : 3A) > 2 by proving that Suz is
not (3A, 3A, tX)-generated for any conjugacy class tX of Suz. If Suz is
(3A, 3A, tX)-generated then 1

3
+ 1

3
+ 1

t
< 1 and it follows that t ≥ 4. Set

K = {4A, 5A, 6A}. Using GAP [18] we see that ∆Suz(3A, 3A, tX) = 0 if
tX /∈ K and for tX ∈ K we have ∆Suz(3A, 3A, tX) < |CSuz(tX)|. We get
that

∆∗Suz(3A, 3A, tX) < ∆Suz(3A, 3A, tX) < |CSuz(tX)|.
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Applying Lemma 4, we obtain that ∆∗Suz(3A, 3A, tX) = 0 for all tX with
t ≥ 4 and therefore Suz is not (3A, 3A, tX)-generated which means that
rank(Suz : 3A) > 2. Now since Suz is (3A, 3C, 21A)-generated (see [3])
the result follows by applying Corollary 2.

Lemma 7 Let nX be a conjugacy class of Suz such that nX /∈{1A, 2A, 2B,
3A}. Then rank(Suz : nX) = 2.

Proof. Our main proof considers the following three cases.
Case 1. Let nX = 3B. Here M12.2 is the only maximal subgroup

of Suz having non-empty intersection with the conjugacy classes 2B, 3B
and 11A of Suz. Our calculations give ∆Suz(2B, 3B, 11A) = 77, and
ΣM12.2(2B, 3B, 11A) = 11. Since a fixed element of order 11 is contained in
a unique conjugate of M12.2 subgroup of Suz. Hence ∆∗Suz(2B, 3B, 11A) ≥
77 − 11 = 66 > 0. Thus Suz is (2B, 3B, 11A)-generated and again by
applying Lemma 3 we have rank(Suz : 3B) = 2. This completes the proof.

Case 2. Let nX∈K where K = {4A, 6A}. We observe that no maximal
subgroup of Suz have non-empty intersection with the classes 2B, 11A and
for each nX ∈ K. Since ∆Suz(2B, 4A, 11A) = 22 and ∆Suz(2B, 6A, 11A) =
638, we obtain that ∆∗Suz(2B, nX, 11A) = ∆Suz(2B, nX, 11A) > 0 where
nX∈K. Hence Suz is (2B, nX, 11A)-generated and by Lemma 3 we have
rank(Suz : nX) = 2 for each nX∈K.

Case 3. Let nX∈Ω where Ω = {3C, 4BCD, 5AB, 6BCDE, 7A, 8A, 9AB,
10AB, 11A, 13AB, 12ABCDE, 14A, 15ABC, 18AB, 20A, 21AB, 24A}.Direct
computations using GAP and from the results of [3] together with the
power maps of the elements of Suz, we obtain that Suz = 〈a, b〉 where
a ∈ 2A and b ∈ Ω. Thus Suz is (2A, nX,mY )-generated for each nX ∈
Ω and with appropriate mY . Applying Lemma 3, we obtain that Suz
is (nX, nX, (mY )2)-generated with appropriate mY and so rank(Suz :
nX) = 2 for each nX ∈ Ω.

We now summarize our results of this section in the following theorem:

Theorem 8 Let Suz be the Suzuki’s sporadic simple group. Then

(i) rank(Suz : nX) = 3 if nX ∈ {2A, 2B, 3A}.

(ii) rank(Suz : nX) = 2 if nX /∈ {1A, 2A, 2B, 3A}.

Proof. The proof follows from Lemmas 5, 6 and 7.
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3 Ranks of Th

The Thompson group Th is a sporadic simple group of order

90745943887872000 = 215.310.53.72.13.19.31

It is well known fact that Th has exactly 16 conjugacy classes of maximal
subgroups as listed in [13] and [6]. It has precisely one class of involution,
namely 2A as represented in the ATLAS [6].

Lemma 9 rank(Th : 2A) = 3.

Proof. Linton in [13] and Ashrafi in [3] proved that Thompson group Th
is (2A, 3C, 7A)-generated, that is Th is Hurwitz group. Thus Corollary 2
implies that rank(Th : 2A) ≤ 3. Since the Thompson group Th is not
isomorphic to any Dihedral group D2n, we must have rank(Th : 2A) = 3.

Lemma 10 Let nX be a conjugacy class of Th such that nX /∈ {1A, 2A}.
Then rank(Th : nX) = 2.

Proof. Direct computation using GAP and from the results of Ashrafi
[3] together with information about the power maps, we can show that Th
is (2A, nX,mZ)-generated for all nX /∈ {1A, 2A} with appropriate mZ.
Now by Lemma 3, Th is (nX, nX, (mZ)2)-generated for all nX /∈ {1A, 2A}.
Hence rank(Th : nX) = 2 where nX /∈ {1A, 2A}.

We are now ready to state the main result of this section.

Theorem 11 Let Th be the Thompson’s sporadic simple group. Then

(i) rank(Th : 2A) = 3.

(ii) rank(Th : nX) = 2 where nX /∈ {1A, 2A}.

Proof. The proof follows from Lemmas 9 and 10.
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4 Ranks of Ru

The Rudvalis group Ru is a sporadic simple group of order

145926144000 = 214.33.53.7.13.29

It is well known fact that Ru has exactly 15 conjugacy classes of maxi-
mal subgroups as listed in the ATLAS [6]. It has precisely two classes of
involution, namely 2A and 2B as represented in the ATLAS.

Theorem 12 Let Ru be the Rudvalis’s sporadic simple group. Then

(i) rank(Ru : nX) = 3 if nX ∈ {2A, 2B}.

(ii) rank(Ru : nX) = 2 if nX /∈ {1A, 2A, 2B}.

Proof. First suppose that X∈{A,B}. We know that Ru is (2X, 3A, 29A)-
generated (see [8]). By applying Corollary 2 we obtain that rank(Ru :
2X) ≤ 3. But rank(Ru : 2X) = 2 is not possible since Ru is not isomor-
phic to any Dihedral group D2n and therefore rank(Ru : 2X) = 3 where
X∈{A,B}.

Next suppose that nX /∈{1A, 2A, 2B} and we prove that Ru is (2A, nX,
29A)-generated. From the list of maximal subgroups of Ru given in the
ATLAS we observe that no maximal subgroup of Ru intersects with the
conjugacy classes 2A, 29A and nX of Ru. Hence

∆∗Ru(2A, nX, 29A)≥∆Ru(2A, nX, 29A)>0 (see Table I).

Hence Ru is (2A, nX, 29A)-generated and we obtain that rank(Ru : nX) =
2 by applying Lemma 3. This completes the proof.
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Table I: Structure Constants of Ru

nX 3A 4A 4B 4C 4D 5A
∆Ru(2A, nX, 29A) 203 29 174 551 1015 551

nX 5B 6A 7A 8A 8B 8C
∆Ru(2A, nX, 29A) 1914 11948 21489 5916 9860 17748

nX 10A 10B 12A 12B 13A 14A
∆Ru(2A, nX, 29A) 15196 30624 24128 48256 10904 21112

nX 14B 14C 15A 16A 16B 20A
∆Ru(2A, nX, 29A) 21112 21112 40223 37120 37120 28072

nX 20B 20C 24A 24B 26A 26B
∆Ru(2A, nX, 29A) 31320 31320 25288 25288 10904 10904

nX 26C 29A 29B - - -
∆Ru(2A, nX, 29A) 10904 20735 20735 - - -
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